Pregled bibliografske jedinice broj: 1280799
Reconstruction of incomplete wildfire data using deep generative models
Reconstruction of incomplete wildfire data using deep generative models // Extremes, 26 (2023), 2; 251-271 doi:10.1007/s10687-022-00459-1 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1280799 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Reconstruction of incomplete wildfire data using deep generative models
Autori
Ivek, Tomislav ; Vlah, Domagoj
Izvornik
Extremes (1386-1999) 26
(2023), 2;
251-271
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Data reconstruction ; Variational autoencoder ; Convolutional neural network ; Deep learning ; Ensemble ; Extreme Value Analysis Conference challenge ; Wildfires
Sažetak
We present our submission to the Extreme Value Analysis 2021 Data Challenge in which teams were asked to accurately predict distributions of wildfire frequency and size within spatio-temporal regions of missing data. For this competition, we developed a variant of the powerful variational autoencoder models, which we call Conditional Missing data Importance-Weighted Autoencoder (CMIWAE). Our deep latent variable generative model requires little to no feature engineering and does not necessarily rely on the specifics of scoring in the Data Challenge. It is fully trained on incomplete data, with the single objective to maximize log-likelihood of the observed wildfire information. We mitigate the effects of the relatively low number of training samples by stochastic sampling from a variational latent variable distribution, as well as by ensembling a set of CMIWAE models trained and validated on different splits of the provided data.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus