Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1280799

Reconstruction of incomplete wildfire data using deep generative models


Ivek, Tomislav; Vlah, Domagoj
Reconstruction of incomplete wildfire data using deep generative models // Extremes, 26 (2023), 2; 251-271 doi:10.1007/s10687-022-00459-1 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1280799 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Reconstruction of incomplete wildfire data using deep generative models

Autori
Ivek, Tomislav ; Vlah, Domagoj

Izvornik
Extremes (1386-1999) 26 (2023), 2; 251-271

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Data reconstruction ; Variational autoencoder ; Convolutional neural network ; Deep learning ; Ensemble ; Extreme Value Analysis Conference challenge ; Wildfires

Sažetak
We present our submission to the Extreme Value Analysis 2021 Data Challenge in which teams were asked to accurately predict distributions of wildfire frequency and size within spatio-temporal regions of missing data. For this competition, we developed a variant of the powerful variational autoencoder models, which we call Conditional Missing data Importance-Weighted Autoencoder (CMIWAE). Our deep latent variable generative model requires little to no feature engineering and does not necessarily rely on the specifics of scoring in the Data Challenge. It is fully trained on incomplete data, with the single objective to maximize log-likelihood of the observed wildfire information. We mitigate the effects of the relatively low number of training samples by stochastic sampling from a variational latent variable distribution, as well as by ensembling a set of CMIWAE models trained and validated on different splits of the provided data.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Profili:

Avatar Url Domagoj Vlah (autor)

Avatar Url Tomislav Ivek (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Ivek, Tomislav; Vlah, Domagoj
Reconstruction of incomplete wildfire data using deep generative models // Extremes, 26 (2023), 2; 251-271 doi:10.1007/s10687-022-00459-1 (međunarodna recenzija, članak, znanstveni)
Ivek, T. & Vlah, D. (2023) Reconstruction of incomplete wildfire data using deep generative models. Extremes, 26 (2), 251-271 doi:10.1007/s10687-022-00459-1.
@article{article, author = {Ivek, Tomislav and Vlah, Domagoj}, year = {2023}, pages = {251-271}, DOI = {10.1007/s10687-022-00459-1}, keywords = {Data reconstruction, Variational autoencoder, Convolutional neural network, Deep learning, Ensemble, Extreme Value Analysis Conference challenge, Wildfires}, journal = {Extremes}, doi = {10.1007/s10687-022-00459-1}, volume = {26}, number = {2}, issn = {1386-1999}, title = {Reconstruction of incomplete wildfire data using deep generative models}, keyword = {Data reconstruction, Variational autoencoder, Convolutional neural network, Deep learning, Ensemble, Extreme Value Analysis Conference challenge, Wildfires} }
@article{article, author = {Ivek, Tomislav and Vlah, Domagoj}, year = {2023}, pages = {251-271}, DOI = {10.1007/s10687-022-00459-1}, keywords = {Data reconstruction, Variational autoencoder, Convolutional neural network, Deep learning, Ensemble, Extreme Value Analysis Conference challenge, Wildfires}, journal = {Extremes}, doi = {10.1007/s10687-022-00459-1}, volume = {26}, number = {2}, issn = {1386-1999}, title = {Reconstruction of incomplete wildfire data using deep generative models}, keyword = {Data reconstruction, Variational autoencoder, Convolutional neural network, Deep learning, Ensemble, Extreme Value Analysis Conference challenge, Wildfires} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font