Pregled bibliografske jedinice broj: 1279986
Analysing the Impact of Gender Classification on Age Estimation
Analysing the Impact of Gender Classification on Age Estimation // EICC '23: Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference / Mileva, Aleksandra ; Wendzel, Steffen (ur.).
Stavanger, Norway: Association for Computing Machinery (ACM), 2023. str. 134-137 doi:10.1145/3590777.3590813 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1279986 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analysing the Impact of Gender Classification on Age
Estimation
Autori
Grd, Petra ; Barčić, Ena ; Tomičić, Igor ; Okreša Đurić, Bogdan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
EICC '23: Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference
/ Mileva, Aleksandra ; Wendzel, Steffen - Stavanger, Norway : Association for Computing Machinery (ACM), 2023, 134-137
ISBN
978-1-4503-9829-9
Skup
European Interdisciplinary Cybersecurity Conference EICC 2023
Mjesto i datum
Stavanger, Norveška, 14.06.2023. - 15.06.2023
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
face biometrics ; neural networks ; age estimation ; gender classification
Sažetak
Age estimation from facial images is one of the most popular fields of research concerning deep learning and convolutional neural networks. However, there are several factors influencing the final accuracy that require special consideration, and in this research, we examine how gender classification affects age estimation. We use a predefined version of the MobileNetV2 convolutional neural network and train it on the CASIAWebFace dataset which we augmented with our private dataset called AgeCFBP. For the purpose of testing the network performance, we used the FG-NET dataset. The results of our experiments showed that gender pre-classification has a measurable impact on age estimation in both male and female population by decreasing Mean Absolute Error (MAE) metric, which might lead to enhanced applications in real-world scenarios, such as biometric authentication, security systems, human-computer interaction, and age- restricted content access control.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin