Pregled bibliografske jedinice broj: 1279566
Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method // Sensors, 23 (2023), 7; 3431, 14 doi:10.3390/s23073431 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1279566 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Automatic Detection of Microaneurysms in Fundus
Images Using an Ensemble-Based Segmentation Method
Autori
Raudonis, Vidas ; Kairys, Arturas ; Verkauskiene, Rasa ; Sokolovska, Jelizaveta ; Petrovski, Goran ; Balciuniene, Vilma Jurate ; Volke, Vallo
Izvornik
Sensors (1424-8220) 23
(2023), 7;
3431, 14
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
diabetic retinopathy (DR) ; image segmentation ; microaneurysms (MAs) ; encoder-decoder deep neural network
Sažetak
In this study, a novel method for automatic microaneurysm detection in color fundus images is presented. The proposed method is based on three main steps: (1) image breakdown to smaller image patches, (2) inference to segmentation models, and (3) reconstruction of the predicted segmentation map from output patches. The proposed segmentation method is based on an ensemble of three individual deep networks, such as U-Net, ResNet34-UNet and UNet++. The performance evaluation is based on the calculation of the Dice score and IoU values. The ensemble-based model achieved higher Dice score (0.95) and IoU (0.91) values compared to other network architectures. The proposed ensemble-based model demonstrates the high practical application potential for detection of early-stage diabetic retinopathy in color fundus images.
Izvorni jezik
Engleski
Znanstvena područja
Kliničke medicinske znanosti
POVEZANOST RADA
Ustanove:
KBC Split,
Medicinski fakultet, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE