Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1279116

Financial statements fraud identifiers


Zenzerović, Robert; Šajrih, Josip
Financial statements fraud identifiers // Ekonomska istraživanja, 36 (2023), 1-13 doi:10.1080/1331677X.2023.2218916 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1279116 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Financial statements fraud identifiers

Autori
Zenzerović, Robert ; Šajrih, Josip

Izvornik
Ekonomska istraživanja (1331-677X) 36 (2023); 1-13

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Financial statement fraud ; fraud detection models ; logistic regression analysis ; SMOTE algorithm ; ROC analysis

Sažetak
Contemporary research among fraud professionals indicates that organizations lose 5% of revenues from fraud every year which makes the research in this area and the derivation of fraud detection models very important. The purpose of the article is to develop a new accounting tool that will help companies and investors in prompt fraud detection and prevention which can finally result in the preservation of financial stability as well as more efficient capital allocation. In this context, the main objective of the research is to test the significance of some financial statements positions’ relations that has not been used in the previous research using the dataset from SEC AAERs presented and included in Bao et al.’s research as well as to combine them with existing ones and consequently develop new financial statement fraud detection model. Another objective consists of presenting some of the most significant and contemporary research in the field of financial statement fraud detection models and comparing their quality using the ROC analysis. Research results were generated by using the SMOTE algorithm and logistic regression analysis on the dataset of 146045 cases for a period from 1982 to 2014 and point out five independent variables used by Baoet al. The financial statement fraud detection model comprised of change in free cash flow, percentage of soft assets, sale of common and preferred stock, change in cash sales, and change in receivables shows a sufficient level of discriminant power with 67% area under ROC curve. The model derived could be used a sa starting point for fraud detection preventing the significant losses the company and stakeholders could face.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Ustanove:
Sveučilište Jurja Dobrile u Puli

Profili:

Avatar Url Robert Zenzerović (autor)

Poveznice na cjeloviti tekst rada:

doi www.tandfonline.com

Citiraj ovu publikaciju:

Zenzerović, Robert; Šajrih, Josip
Financial statements fraud identifiers // Ekonomska istraživanja, 36 (2023), 1-13 doi:10.1080/1331677X.2023.2218916 (međunarodna recenzija, članak, znanstveni)
Zenzerović, R. & Šajrih, J. (2023) Financial statements fraud identifiers. Ekonomska istraživanja, 36, 1-13 doi:10.1080/1331677X.2023.2218916.
@article{article, author = {Zenzerovi\'{c}, Robert and \v{S}ajrih, Josip}, year = {2023}, pages = {1-13}, DOI = {10.1080/1331677X.2023.2218916}, keywords = {Financial statement fraud, fraud detection models, logistic regression analysis, SMOTE algorithm, ROC analysis}, journal = {Ekonomska istra\v{z}ivanja}, doi = {10.1080/1331677X.2023.2218916}, volume = {36}, issn = {1331-677X}, title = {Financial statements fraud identifiers}, keyword = {Financial statement fraud, fraud detection models, logistic regression analysis, SMOTE algorithm, ROC analysis} }
@article{article, author = {Zenzerovi\'{c}, Robert and \v{S}ajrih, Josip}, year = {2023}, pages = {1-13}, DOI = {10.1080/1331677X.2023.2218916}, keywords = {Financial statement fraud, fraud detection models, logistic regression analysis, SMOTE algorithm, ROC analysis}, journal = {Ekonomska istra\v{z}ivanja}, doi = {10.1080/1331677X.2023.2218916}, volume = {36}, issn = {1331-677X}, title = {Financial statements fraud identifiers}, keyword = {Financial statement fraud, fraud detection models, logistic regression analysis, SMOTE algorithm, ROC analysis} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font