Pregled bibliografske jedinice broj: 1278468
Tool for automatic labeling of objects in images obtained from Carla autonomous driving simulator
Tool for automatic labeling of objects in images obtained from Carla autonomous driving simulator // Proceedings IEEE ZINC 2023
Novi Sad, Srbija, 2023. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1278468 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Tool for automatic labeling of objects in images
obtained from Carla autonomous driving simulator
Autori
Benčević, Zvonimir ; Grbić, Ratko ; Jelić, Borna ; Vranješ, Mario
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings IEEE ZINC 2023
/ - Novi Sad, Srbija, 2023, 1-6
Skup
IEEE Zooming Innovation in Consumer Technology International Conference 2023 (ZINC 2023)
Mjesto i datum
Novi Sad, Srbija, 29.05.2023. - 31.05.2023
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
object detection ; annotation ; dataset ; driving simulator ; synthetic data ; machine learning
Sažetak
To successfully train modern object detectors in a supervised manner, a large number of labeled images is usually required. Collecting and annotating images can be an expensive and time- consuming job, especially in the field of autonomous driving. A cheaper and faster alternative can be found in computer simulations of real-world traffic scenes, where the object of interest can be automatically labeled. In this spirit, a tool for automatic labeling of the images obtained from CARLA autonomous driving simulator is proposed. The tool runs in parallel with CARLA simulator and creates a synthetic dataset with annotations in the appropriate format for the following objects of interest: traffic lights, traffic signs, vehicles, and pedestrians. The tool enables the end-user to generate a synthetic dataset with a desired number of images and with desired parameters such as weather condition, image resolution, and traffic density. In that way, large synthetic datasets can be generated in a short period of time.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo