Pregled bibliografske jedinice broj: 1278467
Slow motion video sequences database for freezing artifact detection
Slow motion video sequences database for freezing artifact detection // Proceedings IEEE ZINC 2023
Novi Sad, Srbija, 2023. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1278467 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Slow motion video sequences database for freezing
artifact detection
Autori
Vrtar, Ela ; Herceg, Marijan ; Vranješ, Mario ; Babić, Danijel
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings IEEE ZINC 2023
/ - Novi Sad, Srbija, 2023, 1-6
Skup
IEEE Zooming Innovation in Consumer Technology International Conference 2023 (ZINC 2023)
Mjesto i datum
Novi Sad, Srbija, 29.05.2023. - 31.05.2023
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
video freezing artifact ; no-reference algorithm ; video database
Sažetak
In this paper, a new video sequence database, called Slow Motion Video Sequences (SMVS), is developed. The developed SMVS database consists of 30 video sequences with very low temporal activities, where every sequence contains a freezing artifact. The performance of two freezing detection algorithms, the Histogram-Based Freezing Artifacts Detection Algorithm (HBFDA) and the Real-Time no-reference Freezing Detection Algorithm (RTFDA) are tested on the developed database. The testing results show the poor performance of the tested algorithms.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek