Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1278046

Estimation of sea state parameters from ship motion responses using attention-based neural networks


Selimović, Denis; Hržić, Franko; Prpić-Oršić, Jasna; Lerga, Jonatan
Estimation of sea state parameters from ship motion responses using attention-based neural networks // Ocean engineering, 281 (2023), 114915; 114915, 13 doi:10.1016/j.oceaneng.2023.114915 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1278046 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Estimation of sea state parameters from ship motion responses using attention-based neural networks

Autori
Selimović, Denis ; Hržić, Franko ; Prpić-Oršić, Jasna ; Lerga, Jonatan

Izvornik
Ocean engineering (0029-8018) 281 (2023), 114915; 114915, 13

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Ship motions ; Sea state estimation ; Deep learning ; Attention neural network ; Uncertainty estimation

Sažetak
On-site estimation of sea state parameters is crucial for ship navigation. Extensive research has been conducted on model-based estimation utilizing ship motion responses. Model-free approaches based on machine learning (ML) have recently gained popularity, and estimation from time-series of ship motion responses using deep learning (DL) methods has given promising results. In this study, we apply the novel, attention-based neural network (AT-NN) for estimating wave height, zero-crossing period, and relative wave direction from raw time-series data of ship pitch, heave, and roll. Despite reduced input data, it has been demonstrated that the proposed approaches by modified state-of-the-art techniques (based on convolutional neural networks (CNN)for regression, multivariate long short-term memory CNN, and sliding puzzle neural network) improved estimation MSE, MAE, and NSE by up to 86%, 66%, and 56%, respectively, compared to the best performing original methods for all sea state parameters. Furthermore, the proposed technique based on AT-NN outperformed all tested methods (original and enhanced), improving estimation MSE by 94%, MAE by 74%, and NSE by 80% when considering all sea state parameters. Finally, we proposed a novel approach for interpreting the uncertainty estimation of neural network outputs based on the Monte-Carlo dropout method to enhance the model’s trustworthiness.

Izvorni jezik
Engleski

Znanstvena područja
Brodogradnja, Računarstvo



POVEZANOST RADA


Projekti:
IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)
NadSve-Sveučilište u Rijeci-UNIRI_TEHNIC‐18‐18‐1146 - Nesigurnosti procjene brzine broda u pri realnim vremenskim uvjetima (Prpić-Oršić, Jasna, NadSve ) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Selimović, Denis; Hržić, Franko; Prpić-Oršić, Jasna; Lerga, Jonatan
Estimation of sea state parameters from ship motion responses using attention-based neural networks // Ocean engineering, 281 (2023), 114915; 114915, 13 doi:10.1016/j.oceaneng.2023.114915 (međunarodna recenzija, članak, znanstveni)
Selimović, D., Hržić, F., Prpić-Oršić, J. & Lerga, J. (2023) Estimation of sea state parameters from ship motion responses using attention-based neural networks. Ocean engineering, 281 (114915), 114915, 13 doi:10.1016/j.oceaneng.2023.114915.
@article{article, author = {Selimovi\'{c}, Denis and Hr\v{z}i\'{c}, Franko and Prpi\'{c}-Or\v{s}i\'{c}, Jasna and Lerga, Jonatan}, year = {2023}, pages = {13}, DOI = {10.1016/j.oceaneng.2023.114915}, chapter = {114915}, keywords = {Ship motions, Sea state estimation, Deep learning, Attention neural network, Uncertainty estimation}, journal = {Ocean engineering}, doi = {10.1016/j.oceaneng.2023.114915}, volume = {281}, number = {114915}, issn = {0029-8018}, title = {Estimation of sea state parameters from ship motion responses using attention-based neural networks}, keyword = {Ship motions, Sea state estimation, Deep learning, Attention neural network, Uncertainty estimation}, chapternumber = {114915} }
@article{article, author = {Selimovi\'{c}, Denis and Hr\v{z}i\'{c}, Franko and Prpi\'{c}-Or\v{s}i\'{c}, Jasna and Lerga, Jonatan}, year = {2023}, pages = {13}, DOI = {10.1016/j.oceaneng.2023.114915}, chapter = {114915}, keywords = {Ship motions, Sea state estimation, Deep learning, Attention neural network, Uncertainty estimation}, journal = {Ocean engineering}, doi = {10.1016/j.oceaneng.2023.114915}, volume = {281}, number = {114915}, issn = {0029-8018}, title = {Estimation of sea state parameters from ship motion responses using attention-based neural networks}, keyword = {Ship motions, Sea state estimation, Deep learning, Attention neural network, Uncertainty estimation}, chapternumber = {114915} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font