Pregled bibliografske jedinice broj: 1278046
Estimation of sea state parameters from ship motion responses using attention-based neural networks
Estimation of sea state parameters from ship motion responses using attention-based neural networks // Ocean engineering, 281 (2023), 114915; 114915, 13 doi:10.1016/j.oceaneng.2023.114915 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1278046 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Estimation of sea state parameters from ship motion responses using
attention-based neural networks
Autori
Selimović, Denis ; Hržić, Franko ; Prpić-Oršić, Jasna ; Lerga, Jonatan
Izvornik
Ocean engineering (0029-8018) 281
(2023), 114915;
114915, 13
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Ship motions ; Sea state estimation ; Deep learning ; Attention neural network ; Uncertainty estimation
Sažetak
On-site estimation of sea state parameters is crucial for ship navigation. Extensive research has been conducted on model-based estimation utilizing ship motion responses. Model-free approaches based on machine learning (ML) have recently gained popularity, and estimation from time-series of ship motion responses using deep learning (DL) methods has given promising results. In this study, we apply the novel, attention-based neural network (AT-NN) for estimating wave height, zero-crossing period, and relative wave direction from raw time-series data of ship pitch, heave, and roll. Despite reduced input data, it has been demonstrated that the proposed approaches by modified state-of-the-art techniques (based on convolutional neural networks (CNN)for regression, multivariate long short-term memory CNN, and sliding puzzle neural network) improved estimation MSE, MAE, and NSE by up to 86%, 66%, and 56%, respectively, compared to the best performing original methods for all sea state parameters. Furthermore, the proposed technique based on AT-NN outperformed all tested methods (original and enhanced), improving estimation MSE by 94%, MAE by 74%, and NSE by 80% when considering all sea state parameters. Finally, we proposed a novel approach for interpreting the uncertainty estimation of neural network outputs based on the Monte-Carlo dropout method to enhance the model’s trustworthiness.
Izvorni jezik
Engleski
Znanstvena područja
Brodogradnja, Računarstvo
POVEZANOST RADA
Projekti:
IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)
NadSve-Sveučilište u Rijeci-UNIRI_TEHNIC‐18‐18‐1146 - Nesigurnosti procjene brzine broda u pri realnim vremenskim uvjetima (Prpić-Oršić, Jasna, NadSve ) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka
Profili:
Jonatan Lerga
(autor)
Jasna Prpić-Oršić
(autor)
Franko Hržić
(autor)
Denis Selimović
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus