Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1277706

Deep Variational Inverse Scattering


Khorashadizadeh, AmirEhsan; Aghababaei, Ali; Vlašić, Tin; Nguyen Hieu; Dokmanić, Ivan
Deep Variational Inverse Scattering // Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP)
Firenca, Italija, 2023. str. 1-5 doi:10.23919/EuCAP57121.2023.10133365 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1277706 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep Variational Inverse Scattering

Autori
Khorashadizadeh, AmirEhsan ; Aghababaei, Ali ; Vlašić, Tin ; Nguyen Hieu ; Dokmanić, Ivan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP) / - , 2023, 1-5

Skup
2023 17th European Conference on Antennas and Propagation (EuCAP)

Mjesto i datum
Firenca, Italija, 26.03.2023. - 31.03.2023

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Bayesian inference ; conditional normalizing flow ; inverse scattering ; U-Net

Sažetak
Inverse medium scattering solvers generally reconstruct a single solution without an associated measure of uncertainty. This is true both for the classical iterative solvers and for the emerging deep-learning methods. But ill-posedness and noise can make this single estimate inaccurate or misleading. While deep networks such as conditional normalizing flows can be used to sample posteriors in inverse problems, they often yield low-quality samples and uncertainty estimates. In this paper, we propose U-Flow, a Bayesian U-Net based on conditional normalizing flows, which generates high- quality posterior samples and estimates physically-meaningful uncertainty. We show that the proposed model significantly outperforms the recent normalizing flows in terms of posterior sample quality while having comparable performance with the U-Net in point estimation.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Tin Vlašić (autor)

Avatar Url Ivan Dokmanić (autor)

Poveznice na cjeloviti tekst rada:

doi arxiv.org ieeexplore.ieee.org

Citiraj ovu publikaciju:

Khorashadizadeh, AmirEhsan; Aghababaei, Ali; Vlašić, Tin; Nguyen Hieu; Dokmanić, Ivan
Deep Variational Inverse Scattering // Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP)
Firenca, Italija, 2023. str. 1-5 doi:10.23919/EuCAP57121.2023.10133365 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Khorashadizadeh, A., Aghababaei, A., Vlašić, T., Nguyen Hieu & Dokmanić, I. (2023) Deep Variational Inverse Scattering. U: Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP) doi:10.23919/EuCAP57121.2023.10133365.
@article{article, author = {Khorashadizadeh, AmirEhsan and Aghababaei, Ali and Vla\v{s}i\'{c}, Tin and Dokmani\'{c}, Ivan}, year = {2023}, pages = {1-5}, DOI = {10.23919/EuCAP57121.2023.10133365}, keywords = {Bayesian inference, conditional normalizing flow, inverse scattering, U-Net}, doi = {10.23919/EuCAP57121.2023.10133365}, title = {Deep Variational Inverse Scattering}, keyword = {Bayesian inference, conditional normalizing flow, inverse scattering, U-Net}, publisherplace = {Firenca, Italija} }
@article{article, author = {Khorashadizadeh, AmirEhsan and Aghababaei, Ali and Vla\v{s}i\'{c}, Tin and Dokmani\'{c}, Ivan}, year = {2023}, pages = {1-5}, DOI = {10.23919/EuCAP57121.2023.10133365}, keywords = {Bayesian inference, conditional normalizing flow, inverse scattering, U-Net}, doi = {10.23919/EuCAP57121.2023.10133365}, title = {Deep Variational Inverse Scattering}, keyword = {Bayesian inference, conditional normalizing flow, inverse scattering, U-Net}, publisherplace = {Firenca, Italija} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font