Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1276530

Attention-based U-net: Joint Segmentation of Layers and Fluids from Retinal OCT Images


Melinščak, Martina
Attention-based U-net: Joint Segmentation of Layers and Fluids from Retinal OCT Images // MIPRO 2023 46th International Convention Proceedings / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2023. str. 425-430 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1276530 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Attention-based U-net: Joint Segmentation of Layers and Fluids from Retinal OCT Images

Autori
Melinščak, Martina

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
MIPRO 2023 46th International Convention Proceedings / Skala, Karolj - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2023, 425-430

Skup
46. međunarodni skup za informacijsku, komunikacijsku i elektroničku tehnologiju

Mjesto i datum
Opatija, Hrvatska, 22.05.2023. - 26.05.2023

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Vision Transformer ; attention ; convolutional neural networks ; U-net ; automatic segmentation ; retinal optical coherence tomography images

Sažetak
Since its introduction in 2015, U-net has become state-of-the-art neural network architecture for biomedical image segmentation. Although many modifications have been proposed, few novel concepts were introduced. Recently, some significant breakthroughs have been achieved by introducing attention or, more specifically, Transformers. Many attempts to incorporate self- attention mechanisms into solving computer vision tasks resulted in Vision Transformer (ViT). As ViT has some downsides compared to convolutional neural networks (CNNs), neural networks which merge advantages from both concepts prevail, especially in small data regimes we often face in medicine. U-net architecture still outperforms ViT models as their high accuracy relies on massive data. This paper investigates how attention added in U-net architecture affects results. We evaluate the outcomes on a publicly available dataset which consists of 1136 retinal optical coherence tomography (OCT) images from 24 patients suffering from neovascular age-related macular degeneration (nAMD). Also, we compare results to previously published results, and it could be noted that the Attention-based U-net model achieves higher Dice scores by a significant margin. The code is publicly available.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Tehničko veleučilište u Zagrebu

Profili:

Avatar Url Martina Melinščak (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Melinščak, Martina
Attention-based U-net: Joint Segmentation of Layers and Fluids from Retinal OCT Images // MIPRO 2023 46th International Convention Proceedings / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2023. str. 425-430 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Melinščak, M. (2023) Attention-based U-net: Joint Segmentation of Layers and Fluids from Retinal OCT Images. U: Skala, K. (ur.)MIPRO 2023 46th International Convention Proceedings.
@article{article, author = {Melin\v{s}\v{c}ak, Martina}, editor = {Skala, K.}, year = {2023}, pages = {425-430}, keywords = {Vision Transformer, attention, convolutional neural networks, U-net, automatic segmentation, retinal optical coherence tomography images}, title = {Attention-based U-net: Joint Segmentation of Layers and Fluids from Retinal OCT Images}, keyword = {Vision Transformer, attention, convolutional neural networks, U-net, automatic segmentation, retinal optical coherence tomography images}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Melin\v{s}\v{c}ak, Martina}, editor = {Skala, K.}, year = {2023}, pages = {425-430}, keywords = {Vision Transformer, attention, convolutional neural networks, U-net, automatic segmentation, retinal optical coherence tomography images}, title = {Attention-based U-net: Joint Segmentation of Layers and Fluids from Retinal OCT Images}, keyword = {Vision Transformer, attention, convolutional neural networks, U-net, automatic segmentation, retinal optical coherence tomography images}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font