Pregled bibliografske jedinice broj: 1275418
The non-existence of $D(-1)$-quadruples extending certain pairs in imaginary quadratic rings
The non-existence of $D(-1)$-quadruples extending certain pairs in imaginary quadratic rings // Acta mathematica Hungarica (2023) (znanstveni, prihvaćen)
CROSBI ID: 1275418 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The non-existence of $D(-1)$-quadruples extending
certain pairs in imaginary quadratic rings
Autori
Yasutsugu Fujita, Ivan Soldo
Vrsta, podvrsta
Radovi u časopisima,
znanstveni
Izvornik
Acta mathematica Hungarica (2023)
Status rada
Prihvaćen
Ključne riječi
system of Pellian equations, Diophantine $m$-tuple, Pad\'e approximation method
Sažetak
A $D(n)$-$m$-tuple, where $n$ is a non-zero integer, is a set of $m$ distinct elements in a commutative ring $R$ such that the product of any two distinct elements plus $n$ is a perfect square in $R$. In this paper, we prove that there does not exist a $D(-1)$-quadruple $\{;a, b, c, d\};$ in the ring $\bZ[\sqrt{;-k};]$, $k\ge 2$ with positive integers $a<b< 16a^2-a-2+2\sqrt{;k(8a^2+3a+1)};$ and integers $c$ and $d$ satisfying $d<0<c$. By combining that result with \cite[Theorem~1.1]{;FS};, we were able to obtain a general result on the non-existence of a $D(-1)$-quadruple $\{;a, b, c, d\};$ in $\bZ[\sqrt{;-k};]$ with integers $a, b, c, d$ satisfying $a<b\le 8a-3$. Furthermore, for a non- negative integer $i$ and a positive integer $j$, we apply the obtained results in proving of the non-existence of $D(-1)$-quadruples containing powers of primes $p^i$, $q^j$ with an arbitrary different primes $p$ and $q$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-1313 - Diofantska geometrija i primjene (DIOPHANT) (Kazalicki, Matija, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Ivan Soldo
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus