Pregled bibliografske jedinice broj: 1275186
A survey on usage of multimedia databases for emotion elicitation: A quantitative report on how content diversity can improve performance
A survey on usage of multimedia databases for emotion elicitation: A quantitative report on how content diversity can improve performance // Proceedings of MIPRO 2023 / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2023. str. 1333-1339 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1275186 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A survey on usage of multimedia databases for
emotion elicitation: A quantitative report on how
content diversity can improve performance
Autori
Horvat, Marko ; Jerčić, Petar
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of MIPRO 2023
/ Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2023, 1333-1339
Skup
46th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2023)
Mjesto i datum
Opatija, Hrvatska, 22.05.2023. - 26.05.2023
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
affective computing, emotion, databases, emotion stimulation, document retrieval
Sažetak
Affective picture databases provide a standardized set of images to elicit controlled and consistent emotional responses in research participants. They are a valuable tool for studying various emotion- related phenomena across several research domains. These domains include emotion perception, emotion regulation, and the neural basis of emotion. However, affective picture databases have diverse schemas, structures, and content, making them difficult to use. Searching and retrieving optimal pictures relevant to affective stimulation may be challenging and time-consuming. In this context, we surveyed domain experts about their practices and experiences working with affective multimedia databases such as IAPS, NAPS, OASIS, GAPED, and others. The survey identified a need for novel data observatory software. This finding motivates the authors' intention to develop and validate such software platform that relies on AI. Such a platform would describe better, retrieve, and integrate various semi-structured affective multimedia datasets. The results prominently indicate the overwhelming dissatisfaction regarding stimuli content diversity and cultural bias, specifically regarding emotional and semantic context. The main driver of satisfaction from users of existing automated retrieval software is the quality of semantic descriptors available. This points to the direction AI should take in novel data observatory software. This survey follows up on a similar survey conducted ten years ago and explores the differences in researchers' opinions and experiences during that time. The complete aggregated results are publicly available at https://github.com/mhorvat/stimdbsurvey.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Marko Horvat
(autor)