Pregled bibliografske jedinice broj: 1275053
Comparative analysis of semantic segmentation and object detection methods for early fire detection
Comparative analysis of semantic segmentation and object detection methods for early fire detection // The Second Serbian International Conference on Applied Artificial Intelligence, Kragujevac - Book of Abstracts
Kragujevac, Srbija, 2023. str. 64-64 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1275053 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Comparative analysis of semantic segmentation and object detection methods for early fire detection
Autori
Arlovic, Matej ; Maric, Petar ; Balen, Josip ; Damjanovic, Davor ; Vdovjak, Kresimir
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
The Second Serbian International Conference on Applied Artificial Intelligence, Kragujevac - Book of Abstracts
/ - , 2023, 64-64
ISBN
978-86-81037-77-5
Skup
The Second Serbian International Conference on Applied Artificial Intelligence (AAI 2023)
Mjesto i datum
Kragujevac, Srbija, 19.05.2023. - 20.05.2023
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
early fire detection ; machine learning ; object detection ; semantic segmentation
Sažetak
Fire is an event that can be extremely dangerous since it can result in human casualties, as well as catastrophic property damage. To reduce the amount of damage that fires can cause, early fire detection and prompt coordination with the appropriate authorities are necessary. This issue has inspired a number of works on fire detection systems, which can be categorized into two groups: sensor-based technologies and image-based techniques. Image-based systems employing machine learning algorithms have been demonstrated to be superior to sensor-based systems due to faster fire detection and additional fire-related information they provide. The information includes the fire’s location, intensity, and progression. It is challenging for image-based systems to reliably detect the shape and limits of flames due to several factors, including a background, varying sizes of the fires, and interference from objects that resemble flames. In this study, our objective is to evaluate the performance of semantic segmentation and object detection models using a custom-made image dataset which contains fire in both indoor and outdoor environments.
Izvorni jezik
Engleski
Znanstvena područja
Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Profili:
Matej Arlović
(autor)
Josip Balen
(autor)
Petar Marić
(autor)
Krešimir Vdovjak
(autor)
Davor Damjanović
(autor)