Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1273895

Quality Assessment Assistance of Lateral Knee X-rays: A Hybrid Convolutional Neural Network Approach


Lysdahlgaard, Simon; Baressi Šegota, Sandi; Hess, Søren; Antulov, Ronald; Weber Kusk, Martin; Car, Zlatan
Quality Assessment Assistance of Lateral Knee X-rays: A Hybrid Convolutional Neural Network Approach // Mathematics, (2023), 11(10); 2392, 21 doi:10.3390/math11102392 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1273895 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Quality Assessment Assistance of Lateral Knee X-rays: A Hybrid Convolutional Neural Network Approach

Autori
Lysdahlgaard, Simon ; Baressi Šegota, Sandi ; Hess, Søren ; Antulov, Ronald ; Weber Kusk, Martin ; Car, Zlatan

Izvornik
Mathematics (2227-7390) (2023), 11(10); 2392, 21

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial neural networks ; image classification ; machine learning algorithm ; radiography ; hybrid intelligent systems

Sažetak
A common issue with X-ray examinations (XE) is the erroneous quality classification of the XE, implying that the process needs to be repeated, thus delaying the diagnostic assessment of the XE and increasing the amount of radiation the patient receives. The authors propose a system for automatic quality classification of XE based on convolutional neural networks (CNN) that would simplify this process and significantly decrease erroneous quality classification. The data used for CNN training consist of 4000 knee images obtained via radiography procedure (KXE) in total, with 2000 KXE labeled as acceptable and 2000 as unacceptable. Additionally, half of the KXE belonging to each label are right knees and left knees. Due to the sensitivity to image orientation of some CNNs, three approaches are discussed: (1) Left-right-knee (LRK) classifies XE based just on their label, without taking into consideration their orientation ; (2) Orientation discriminator (OD) for the left knee (LK) and right knee (RK) analyses images based on their orientation and inserts them into two separate models regarding orientation ; (3) Orientation discriminator combined with knee XRs flipped to the left or right (OD-LFK)/OD-RFK trains the models with all images being horizontally flipped to the same orientation and uses the aforementioned OD to determine whether the image needs to be flipped or not. All the approaches are tested with five CNNs (AlexNet, ResNet50, ResNet101, ResNet152, and Xception), with grid search and k-fold cross-validation. The best results are achieved using the OD-RFK hybrid approach with the Xception network architecture as the classifier and ResNet152 as the OD, with an average AUC of 0.97 (±0.01).

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Interdisciplinarne tehničke znanosti, Temeljne medicinske znanosti, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
--uniri-mladi-technic-22-61 - Energetska optimizacija industrijskih robotskih manipulatora primjenom algoritama evolucijskog računarstva (Anđelić, Nikola) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Zlatan Car (autor)

Avatar Url Sandi Baressi Šegota (autor)

Avatar Url Ronald Antulov (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mdpi.com

Citiraj ovu publikaciju:

Lysdahlgaard, Simon; Baressi Šegota, Sandi; Hess, Søren; Antulov, Ronald; Weber Kusk, Martin; Car, Zlatan
Quality Assessment Assistance of Lateral Knee X-rays: A Hybrid Convolutional Neural Network Approach // Mathematics, (2023), 11(10); 2392, 21 doi:10.3390/math11102392 (međunarodna recenzija, članak, znanstveni)
Lysdahlgaard, S., Baressi Šegota, S., Hess, S., Antulov, R., Weber Kusk, M. & Car, Z. (2023) Quality Assessment Assistance of Lateral Knee X-rays: A Hybrid Convolutional Neural Network Approach. Mathematics, (11(10)), 2392, 21 doi:10.3390/math11102392.
@article{article, author = {Lysdahlgaard, Simon and Baressi \v{S}egota, Sandi and Hess, S\oren and Antulov, Ronald and Weber Kusk, Martin and Car, Zlatan}, year = {2023}, pages = {21}, DOI = {10.3390/math11102392}, chapter = {2392}, keywords = {artificial neural networks, image classification, machine learning algorithm, radiography, hybrid intelligent systems}, journal = {Mathematics}, doi = {10.3390/math11102392}, number = {11(10)}, issn = {2227-7390}, title = {Quality Assessment Assistance of Lateral Knee X-rays: A Hybrid Convolutional Neural Network Approach}, keyword = {artificial neural networks, image classification, machine learning algorithm, radiography, hybrid intelligent systems}, chapternumber = {2392} }
@article{article, author = {Lysdahlgaard, Simon and Baressi \v{S}egota, Sandi and Hess, S\oren and Antulov, Ronald and Weber Kusk, Martin and Car, Zlatan}, year = {2023}, pages = {21}, DOI = {10.3390/math11102392}, chapter = {2392}, keywords = {artificial neural networks, image classification, machine learning algorithm, radiography, hybrid intelligent systems}, journal = {Mathematics}, doi = {10.3390/math11102392}, number = {11(10)}, issn = {2227-7390}, title = {Quality Assessment Assistance of Lateral Knee X-rays: A Hybrid Convolutional Neural Network Approach}, keyword = {artificial neural networks, image classification, machine learning algorithm, radiography, hybrid intelligent systems}, chapternumber = {2392} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font