Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1270072

Prediction of Microclimate Parameters for Application in Precision Agriculture


Kreković, Dora; Podnar Žarko, Ivana
Prediction of Microclimate Parameters for Application in Precision Agriculture // Proceedings of International Conference on Smart Systems and Technologies (SST 2022) / Nyarko, Emmanuel Karlo ; Matić, Tomislav ; Cupec, Robert ; Vranješ, Mario (ur.).
Osijek: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 351-356 doi:10.1109/SST55530.2022.9954659 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1270072 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Prediction of Microclimate Parameters for Application in Precision Agriculture

Autori
Kreković, Dora ; Podnar Žarko, Ivana

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of International Conference on Smart Systems and Technologies (SST 2022) / Nyarko, Emmanuel Karlo ; Matić, Tomislav ; Cupec, Robert ; Vranješ, Mario - Osijek : Institute of Electrical and Electronics Engineers (IEEE), 2022, 351-356

ISBN
978-1-6654-8214-1

Skup
International Conference on Smart Systems and Technologies (SST 2022)

Mjesto i datum
Osijek, Hrvatska, 19.10.2022. - 21.10.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
LSTM, machine learning, neural networks, SARIMA, time series, time series forecast

Sažetak
Prediction of microclimate parameters such as temperature, wind speed, and humidity enables planning and management of agricultural production to improve crop yields and quality. This paper provides an overview of methods for predicting microclimate parameters based on past time series data as input. The paper provides insight into time series prediction methods using statistical models and neural network algorithms. The SARIMA statistical model and LSTM neural network model were implemented and evaluated on two case studies: the first one uses climate data from the Copernicus service CDS, while the other one is created using real sensor data streams from an agrometeorological station. Experimental results show that the proposed models perform well to predict future sensor readings in the short term for both datasets and demonstrate that practical prediction of microclimate parameters, which are critical for precision agriculture, is possible with both models.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Poljoprivreda (agronomija)



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-1986 - Pametne usluge usmjerene čovjeku u interoperabilnim i decentraliziranim okolinama Interneta stvari (IoT4us) (Podnar Žarko, Ivana, HRZZ ) ( CroRIS)
--KK.01.1.1.04.0108 - Ekosustav umreženih uređaja i usluga za Internet stvari s primjenom u poljoprivredi (IoT-polje) (Podnar Žarko, Ivana) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivana Podnar Žarko (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org ieeexplore.ieee.org

Poveznice na istraživačke podatke:

doi.org

Citiraj ovu publikaciju:

Kreković, Dora; Podnar Žarko, Ivana
Prediction of Microclimate Parameters for Application in Precision Agriculture // Proceedings of International Conference on Smart Systems and Technologies (SST 2022) / Nyarko, Emmanuel Karlo ; Matić, Tomislav ; Cupec, Robert ; Vranješ, Mario (ur.).
Osijek: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 351-356 doi:10.1109/SST55530.2022.9954659 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Kreković, D. & Podnar Žarko, I. (2022) Prediction of Microclimate Parameters for Application in Precision Agriculture. U: Nyarko, E., Matić, T., Cupec, R. & Vranješ, M. (ur.)Proceedings of International Conference on Smart Systems and Technologies (SST 2022) doi:10.1109/SST55530.2022.9954659.
@article{article, author = {Krekovi\'{c}, Dora and Podnar \v{Z}arko, Ivana}, year = {2022}, pages = {351-356}, DOI = {10.1109/SST55530.2022.9954659}, keywords = {LSTM, machine learning, neural networks, SARIMA, time series, time series forecast}, doi = {10.1109/SST55530.2022.9954659}, isbn = {978-1-6654-8214-1}, title = {Prediction of Microclimate Parameters for Application in Precision Agriculture}, keyword = {LSTM, machine learning, neural networks, SARIMA, time series, time series forecast}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Osijek, Hrvatska} }
@article{article, author = {Krekovi\'{c}, Dora and Podnar \v{Z}arko, Ivana}, year = {2022}, pages = {351-356}, DOI = {10.1109/SST55530.2022.9954659}, keywords = {LSTM, machine learning, neural networks, SARIMA, time series, time series forecast}, doi = {10.1109/SST55530.2022.9954659}, isbn = {978-1-6654-8214-1}, title = {Prediction of Microclimate Parameters for Application in Precision Agriculture}, keyword = {LSTM, machine learning, neural networks, SARIMA, time series, time series forecast}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Osijek, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font