Pregled bibliografske jedinice broj: 1270072
Prediction of Microclimate Parameters for Application in Precision Agriculture
Prediction of Microclimate Parameters for Application in Precision Agriculture // Proceedings of International Conference on Smart Systems and Technologies (SST 2022) / Nyarko, Emmanuel Karlo ; Matić, Tomislav ; Cupec, Robert ; Vranješ, Mario (ur.).
Osijek: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 351-356 doi:10.1109/SST55530.2022.9954659 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1270072 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Prediction of Microclimate Parameters for
Application in Precision Agriculture
Autori
Kreković, Dora ; Podnar Žarko, Ivana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of International Conference on Smart Systems and Technologies (SST 2022)
/ Nyarko, Emmanuel Karlo ; Matić, Tomislav ; Cupec, Robert ; Vranješ, Mario - Osijek : Institute of Electrical and Electronics Engineers (IEEE), 2022, 351-356
ISBN
978-1-6654-8214-1
Skup
International Conference on Smart Systems and Technologies (SST 2022)
Mjesto i datum
Osijek, Hrvatska, 19.10.2022. - 21.10.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
LSTM, machine learning, neural networks, SARIMA, time series, time series forecast
Sažetak
Prediction of microclimate parameters such as temperature, wind speed, and humidity enables planning and management of agricultural production to improve crop yields and quality. This paper provides an overview of methods for predicting microclimate parameters based on past time series data as input. The paper provides insight into time series prediction methods using statistical models and neural network algorithms. The SARIMA statistical model and LSTM neural network model were implemented and evaluated on two case studies: the first one uses climate data from the Copernicus service CDS, while the other one is created using real sensor data streams from an agrometeorological station. Experimental results show that the proposed models perform well to predict future sensor readings in the short term for both datasets and demonstrate that practical prediction of microclimate parameters, which are critical for precision agriculture, is possible with both models.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Poljoprivreda (agronomija)
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-1986 - Pametne usluge usmjerene čovjeku u interoperabilnim i decentraliziranim okolinama Interneta stvari (IoT4us) (Podnar Žarko, Ivana, HRZZ ) ( CroRIS)
--KK.01.1.1.04.0108 - Ekosustav umreženih uređaja i usluga za Internet stvari s primjenom u poljoprivredi (IoT-polje) (Podnar Žarko, Ivana) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Ivana Podnar Žarko
(autor)