Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1269357

Optimal control of parabolic equations - a spectral calculus based approach


Grubišić, Luka; Lazar, Martin; Nakić, Ivica; Tauttenhahn, Martin
Optimal control of parabolic equations - a spectral calculus based approach // Siam journal on control and optimization (2023) (znanstveni, prihvaćen)


CROSBI ID: 1269357 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Optimal control of parabolic equations - a spectral calculus based approach

Autori
Grubišić, Luka ; Lazar, Martin ; Nakić, Ivica ; Tauttenhahn, Martin

Vrsta, podvrsta
Radovi u časopisima, znanstveni

Izvornik
Siam journal on control and optimization (2023)

Status rada
Prihvaćen

Ključne riječi
optimal control, parabolic equations ; spectral calculus ; rational Krylov spaces ; numerical implementation

Sažetak
In this paper we consider a constrained parabolic optimal control problem. The cost functional is quadratic and it combines the distance of the trajectory of the system from the desired evolution profile together with the cost of a control. The constraint is given by a term measuring the distance between the final state and the desired state towards which the solution should be steered. The control enters the system through the initial condition. We present a geometric analysis of this problem and provide a closed-form expression for the solution. This approach allows us to present the sensitivity analysis of this problem based on the resolvent estimates for the generator of the system. The numerical implementation is performed by exploring efficient rational Krylov approximation techniques that allow us to approximate a complex function of an operator by a series of linear problems. Our method does not depend on the actual choice of discretization. The main approximation task is to construct an efficient rational approximation of a generalized exponential function. It is well known that this class of functions allows exponentially convergent rational approximations, which, combined with the sensitivity analysis of the closed form solution, allows us to present a robust numerical method. Several case studies are presented to illustrate our results.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-2468 - Upravljanje dinamičkim sustavima (ConDyS) (Lazar, Martin, HRZZ ) ( CroRIS)
HRZZ-IP-2019-04-6268 - Stohastičke aproksimacije malog ranga i primjene na parametarski ovisne probleme (RandLRAP) (Grubišić, Luka, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Sveučilište u Dubrovniku

Profili:

Avatar Url Martin Lazar (autor)

Avatar Url Ivica Nakić (autor)

Avatar Url Luka Grubišić (autor)


Citiraj ovu publikaciju:

Grubišić, Luka; Lazar, Martin; Nakić, Ivica; Tauttenhahn, Martin
Optimal control of parabolic equations - a spectral calculus based approach // Siam journal on control and optimization (2023) (znanstveni, prihvaćen)
Grubišić, L., Lazar, M., Nakić, I. & Tauttenhahn, M. (2023) Optimal control of parabolic equations - a spectral calculus based approach. Prihvaćen za objavljivanje u Siam journal on control and optimization. [Preprint].
@unknown{unknown, author = {Grubi\v{s}i\'{c}, Luka and Lazar, Martin and Naki\'{c}, Ivica and Tauttenhahn, Martin}, year = {2023}, keywords = {optimal control, parabolic equations, spectral calculus, rational Krylov spaces, numerical implementation}, journal = {Siam journal on control and optimization}, title = {Optimal control of parabolic equations - a spectral calculus based approach}, keyword = {optimal control, parabolic equations, spectral calculus, rational Krylov spaces, numerical implementation} }
@unknown{unknown, author = {Grubi\v{s}i\'{c}, Luka and Lazar, Martin and Naki\'{c}, Ivica and Tauttenhahn, Martin}, year = {2023}, keywords = {optimal control, parabolic equations, spectral calculus, rational Krylov spaces, numerical implementation}, journal = {Siam journal on control and optimization}, title = {Optimal control of parabolic equations - a spectral calculus based approach}, keyword = {optimal control, parabolic equations, spectral calculus, rational Krylov spaces, numerical implementation} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font