Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1269049

QSAR bioactivity prediction in clinical metabolomics


Lovrić, Mario; Widdowson, Michael; Chawes, Bo; Rasmussen, Morten
QSAR bioactivity prediction in clinical metabolomics // 28. HSKIKI Book of Abstracts / Rogošić, Marko (ur.).
Zagreb: Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 2023. str. 47-47 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1269049 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
QSAR bioactivity prediction in clinical metabolomics

Autori
Lovrić, Mario ; Widdowson, Michael ; Chawes, Bo ; Rasmussen, Morten

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
28. HSKIKI Book of Abstracts / Rogošić, Marko - Zagreb : Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 2023, 47-47

Skup
28. Hrvatski skup kemičara i kemijskih inženjera

Mjesto i datum
Rovinj, Hrvatska, 28.03.2023. - 31.03.2023

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
QSAR ; bioactivity ; metabolomics ; machine learning

Sažetak
Maternal pregnancy dietary intake, nutrition, and environmental exposure in the early postnatal period of a newborn child are of importance for its health. To understand such relationships, we investigated the metabolomics in a mother-child cohort of n=602 mother child dyads. Amongst the metabolites, there were 79 quantified and annotated xenobiotics. Toxicological risk of the metabolites was evaluated by means of quantitative-structure activity relationships (QSARs). The QSARs were trained using Random forests tuned with Bayesian optimization on 203 molecular descriptors and 4096 Morgan fingerprints as features. The underlying training data were the Tox21 sets which consists of 12 bioactivity endpoints based on stress response and nuclear receptors from a total of n=8174 molecules. Metabolite structures were extracted using an automated pipeline for PubChem written in Python. The validated models were then applied to the metabolite data, which gave insight to which metabolites have a bioactive potential towards the selected endpoints. Results show an overlap in chemical spaces between the metabolites and the Tox21 data. Furthermore, there are many metabolites marked as bioactive, indicating their potential health risks if dysregulated in the body.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Interdisciplinarne prirodne znanosti, Računarstvo, Interdisciplinarne tehničke znanosti, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)



POVEZANOST RADA


Profili:

Avatar Url Mario Lovrić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada www.researchgate.net

Citiraj ovu publikaciju:

Lovrić, Mario; Widdowson, Michael; Chawes, Bo; Rasmussen, Morten
QSAR bioactivity prediction in clinical metabolomics // 28. HSKIKI Book of Abstracts / Rogošić, Marko (ur.).
Zagreb: Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 2023. str. 47-47 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Lovrić, M., Widdowson, M., Chawes, B. & Rasmussen, M. (2023) QSAR bioactivity prediction in clinical metabolomics. U: Rogošić, M. (ur.)28. HSKIKI Book of Abstracts.
@article{article, author = {Lovri\'{c}, Mario and Widdowson, Michael and Chawes, Bo and Rasmussen, Morten}, editor = {Rogo\v{s}i\'{c}, M.}, year = {2023}, pages = {47-47}, keywords = {QSAR, bioactivity, metabolomics, machine learning}, title = {QSAR bioactivity prediction in clinical metabolomics}, keyword = {QSAR, bioactivity, metabolomics, machine learning}, publisher = {Hrvatsko dru\v{s}tvo kemijskih in\v{z}enjera i tehnologa (HDKI)}, publisherplace = {Rovinj, Hrvatska} }
@article{article, author = {Lovri\'{c}, Mario and Widdowson, Michael and Chawes, Bo and Rasmussen, Morten}, editor = {Rogo\v{s}i\'{c}, M.}, year = {2023}, pages = {47-47}, keywords = {QSAR, bioactivity, metabolomics, machine learning}, title = {QSAR bioactivity prediction in clinical metabolomics}, keyword = {QSAR, bioactivity, metabolomics, machine learning}, publisher = {Hrvatsko dru\v{s}tvo kemijskih in\v{z}enjera i tehnologa (HDKI)}, publisherplace = {Rovinj, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font