Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1268322

Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass


Brandić, Ivan; Pezo, Lato; Bilandžija, Nikola; Peter, Anamarija; Šurić, Jona; Voća, Neven
Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass // Mathematics, 11(9) (2023), 2098, 14 doi:10.3390/math11092098 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1268322 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass

Autori
Brandić, Ivan ; Pezo, Lato ; Bilandžija, Nikola ; Peter, Anamarija ; Šurić, Jona ; Voća, Neven

Izvornik
Mathematics (2227-7390) 11(9) (2023); 2098, 14

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
structural analysis ; support vector machine ; artificial neural network ; random forest regression ; high order polynomials

Sažetak
The aim of this study was to investigate the potential of using structural analysis parameters for estimating the higher heating value (HHV) of biomass by obtaining information on the composition of cellulose, lignin, and hemicellulose. To achieve this goal, several nonlinear mathematical models were developed, including polynomials, support vector machines (SVMs), random forest regression (RFR) and artificial neural networks (ANN) for predicting HHV. The performed statistical analysis “goodness of fit” showed that the ANN model has the best performance in terms of coefficient of determination (R2 = 0.90) and the lowest level of model error for the parameters X2 (0.25), RMSE (0.50), and MPE (2.22). Thus, the ANN model was identified as the most appropriate model for determining the HHV of different biomasses based on the specified input parameters. In conclusion, the results of this study demonstrate the potential of using structural analysis parameters as input for HHV modeling, which is a promising approach for the field of biomass energy production. The development of the model ANN and the comparative analysis of the different models provide important insights for future research in this field.

Izvorni jezik
Engleski



POVEZANOST RADA


Profili:

Avatar Url Nikola Bilandžija (autor)

Avatar Url Ivan Brandić (autor)

Avatar Url Neven Voća (autor)

Avatar Url Anamarija Peter (autor)

Avatar Url Jona Šurić (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Brandić, Ivan; Pezo, Lato; Bilandžija, Nikola; Peter, Anamarija; Šurić, Jona; Voća, Neven
Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass // Mathematics, 11(9) (2023), 2098, 14 doi:10.3390/math11092098 (međunarodna recenzija, članak, znanstveni)
Brandić, I., Pezo, L., Bilandžija, N., Peter, A., Šurić, J. & Voća, N. (2023) Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass. Mathematics, 11(9), 2098, 14 doi:10.3390/math11092098.
@article{article, author = {Brandi\'{c}, Ivan and Pezo, Lato and Biland\v{z}ija, Nikola and Peter, Anamarija and \v{S}uri\'{c}, Jona and Vo\'{c}a, Neven}, year = {2023}, pages = {14}, DOI = {10.3390/math11092098}, chapter = {2098}, keywords = {structural analysis, support vector machine, artificial neural network, random forest regression, high order polynomials}, journal = {Mathematics}, doi = {10.3390/math11092098}, volume = {11(9)}, issn = {2227-7390}, title = {Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass}, keyword = {structural analysis, support vector machine, artificial neural network, random forest regression, high order polynomials}, chapternumber = {2098} }
@article{article, author = {Brandi\'{c}, Ivan and Pezo, Lato and Biland\v{z}ija, Nikola and Peter, Anamarija and \v{S}uri\'{c}, Jona and Vo\'{c}a, Neven}, year = {2023}, pages = {14}, DOI = {10.3390/math11092098}, chapter = {2098}, keywords = {structural analysis, support vector machine, artificial neural network, random forest regression, high order polynomials}, journal = {Mathematics}, doi = {10.3390/math11092098}, volume = {11(9)}, issn = {2227-7390}, title = {Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass}, keyword = {structural analysis, support vector machine, artificial neural network, random forest regression, high order polynomials}, chapternumber = {2098} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font