Pregled bibliografske jedinice broj: 1268090
Particle swarm optimization trained neural network for overhead line conductor temperature prediction
Particle swarm optimization trained neural network for overhead line conductor temperature prediction // Fourth International Conference on Smart Grid Metrology (SMAGRIMET 2023) / Konjevod, Jure ; Šala, Alan ; Mostarac, Petar (ur.).
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2023. str. 24-27 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1268090 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Particle swarm optimization trained neural network
for overhead line conductor temperature prediction
Autori
Sterc, Tomislav ; Filipovic-Grcic, Bozidar ; Franc, Bojan ; Mesic, Kresimir ; Zupan, Alan ; Jurisic, Bruno
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Fourth International Conference on Smart Grid Metrology (SMAGRIMET 2023)
/ Konjevod, Jure ; Šala, Alan ; Mostarac, Petar - Zagreb : Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2023, 24-27
ISBN
978-953-184-284-6
Skup
Fourth International Conference on Smart Grid Metrology (SMAGRIMET 2023)
Mjesto i datum
Cavtat, Hrvatska, 24.04.2023. - 28.04.2023
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
STR (Static Thermal Rating), DTR (Dynamic Thermal Rating), OTLM (Overhead Transmission Line Monitoring), OHL (Overhead Line), ANN (Artificial Neural Network), PSO (Particle Swarm Optimization)
Sažetak
Transmission system operators often use Static Thermal Rating (STR) for maximum allowable thermal rating of Overhead Line (OHL) conductor. Such static thermal limits are usually defined for operation in extreme weather conditions which are rarely achieved in real-world operation. In this paper, based on the weather parameters collected from an automated weather station installed on a transmission tower, the conductor temperature is estimated using newly developed method based on Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO). Calculated temperatures are compared with measured temperatures from Overhead Transmission Line Monitoring (OTLM) device. Correct estimation of OHL conductor temperature leads to better prediction of Dynamic Thermal Rating (DTR).
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
KONČAR - Institut za elektrotehniku d.d.,
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Bojan Franc
(autor)
Alan Župan
(autor)
Božidar Filipović-Grčić
(autor)
Tomislav Šterc
(autor)
Bruno Jurišić
(autor)