Pregled bibliografske jedinice broj: 1267639
Multi-label classification of energy efficiency of public buildings based on random forest and CART
Multi-label classification of energy efficiency of public buildings based on random forest and CART // KOI 2022 Book of Abstract / Mijač, Tea ; Šestanović, Tea (ur.).
Zagreb: Hrvatsko društvo za operacijska istraživanja (CRORS), 2022. str. 81-81 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1267639 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multi-label classification of energy efficiency of
public
buildings based on random forest and CART
Autori
Has, Adela ; Đurđević Babić, Ivana ; Šebalj, Dario
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
KOI 2022 Book of Abstract
/ Mijač, Tea ; Šestanović, Tea - Zagreb : Hrvatsko društvo za operacijska istraživanja (CRORS), 2022, 81-81
Skup
19th International Conference on Operational Research KOI 2022
Mjesto i datum
Šibenik, Hrvatska, 28.09.2022. - 30.09.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
random forest, classification and regression trees, multi–label classification, energy efficiency
Sažetak
Non-residential buildings deserve attention when it comes to energy consumption, which should be indicated as an energy class in the energy certificate in Croatia. In this paper, data on 509 public buildings with energy certificates were extracted from the Energy Management Information System. These data included 46 features on meteorological, construction, geospatial and occupational characteristics of the buildings. The objective of this study was to develop and compare a random forest model (RF) and a classification and regression tree model (CART) to classify public buildings into energy classes and to determine the key predictors of each model. These methods were selected for their effectiveness in multiple label classification problems. Both methods used different parameters and hyperparameters to obtain a model with the highest classification accuracy. In this work, the CART method outperformed the random forest method with a classification accuracy of 95.05%. The most important variables in both models were construction characteristics of the building. This study could be useful for policy makers in the field of energy efficiency and energy retrofit.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Ekonomski fakultet, Osijek,
Fakultet za odgojne i obrazovne znanosti, Osijek