Pregled bibliografske jedinice broj: 1266866
Predicting Students'Final Exam Grades Based on Learning Material Usage extracted from Moodle Logs
Predicting Students'Final Exam Grades Based on Learning Material Usage extracted from Moodle Logs // SoftCOM 2022: 30th International Conference on Software, Telecommunications and Computer Networks: Proceedings / Begušić, Dinko ; Rožić, Nikola ; Radić, Joško ; Šarić, Matko (ur.).
Split: Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2022. str. 1-6 doi:10.23919/softcom55329.2022.9911477 (predavanje, nije recenziran, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1266866 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predicting Students'Final Exam Grades Based on Learning Material Usage extracted from Moodle Logs
Autori
Dunatov, Suzana Marija ; Maljković, Jelena ; Kasalo, Kristian ; Prnjak, Antonela ; Lovrinčević, Anamaria
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
SoftCOM 2022: 30th International Conference on Software, Telecommunications and Computer Networks: Proceedings
/ Begušić, Dinko ; Rožić, Nikola ; Radić, Joško ; Šarić, Matko - Split : Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2022, 1-6
ISBN
978-953-290-117-7
Skup
30th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2022
Mjesto i datum
Split, Hrvatska, 22.09.2022. - 24.09.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
educational data mining ; predicting final marks ; student grade pass/fail prediction ; online learning materials
Sažetak
This paper presents the use of data mining to predict students’ final exam grades. We used the data collected from the Moodle platform of the IT course (the University of Split) and compared six classification methods: Decision Tree Classification, k-Nearest Neighbor Classifier, Logistic Regression, Naive Bayes, Random Forest, and Support Vector Machine. Using those methods and Moodle Logs, we aimed to predict the ultimate success in the chosen course. To achieve better accuracy, we evaluated all available and filtered data to determine which algorithms were the most accurate.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Split
Profili:
Antonela Prnjak
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus