Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1266736

Emotion analysis of user reactions to online news


Bagić Babac, Marina
Emotion analysis of user reactions to online news // Information Discovery and Delivery, 51 (2023), 2; 179-193 doi:10.1108/IDD-04-2022-0027 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1266736 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Emotion analysis of user reactions to online news

Autori
Bagić Babac, Marina

Izvornik
Information Discovery and Delivery (2398-6247) 51 (2023), 2; 179-193

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Social media ; Opinion mining ; User comments ; Online news ; User reactions

Sažetak
Social media allow for observing different aspects of human behaviour, in particular, those that can be evaluated from explicit user expressions. Based on a data set of posts with user opinions collected from social media, this paper aims to show an insight into how the readers of different news portals react to online content. The focus is on users’ emotions about the content, so the findings of the analysis provide a further understanding of how marketers should structure and deliver communication content such that it promotes positive engagement behaviour. More than 5.5 million user comments to posted messages from 15 worldwide popular news portals were collected and analysed, where each post was evaluated based on a set of variables that represent either structural (e.g. embedded in intra- or inter-message structure) or behavioural (e.g. exhibiting a certain behavioural pattern that appeared in response to a posted message) component of expressions. The conclusions are based on a set of regression models and exploratory factor analysis. The findings show and theorise the influence of social media content on emotional user engagement. This provides a more comprehensive understanding of the engagement attributed to social media content and, consequently, could be a better predictor of future behaviour. This paper provides original data analysis of user comments and emotional reactions that appeared on social media news websites in 2018.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti, Sociologija, Psihologija, Interdisciplinarne društvene znanosti



POVEZANOST RADA


Profili:

Avatar Url Marina Bagić Babac (autor)

Poveznice na cjeloviti tekst rada:

doi www.emerald.com

Citiraj ovu publikaciju:

Bagić Babac, Marina
Emotion analysis of user reactions to online news // Information Discovery and Delivery, 51 (2023), 2; 179-193 doi:10.1108/IDD-04-2022-0027 (međunarodna recenzija, članak, znanstveni)
Bagić Babac, M. (2023) Emotion analysis of user reactions to online news. Information Discovery and Delivery, 51 (2), 179-193 doi:10.1108/IDD-04-2022-0027.
@article{article, author = {Bagi\'{c} Babac, Marina}, year = {2023}, pages = {179-193}, DOI = {10.1108/IDD-04-2022-0027}, keywords = {Social media, Opinion mining, User comments, Online news, User reactions}, journal = {Information Discovery and Delivery}, doi = {10.1108/IDD-04-2022-0027}, volume = {51}, number = {2}, issn = {2398-6247}, title = {Emotion analysis of user reactions to online news}, keyword = {Social media, Opinion mining, User comments, Online news, User reactions} }
@article{article, author = {Bagi\'{c} Babac, Marina}, year = {2023}, pages = {179-193}, DOI = {10.1108/IDD-04-2022-0027}, keywords = {Social media, Opinion mining, User comments, Online news, User reactions}, journal = {Information Discovery and Delivery}, doi = {10.1108/IDD-04-2022-0027}, volume = {51}, number = {2}, issn = {2398-6247}, title = {Emotion analysis of user reactions to online news}, keyword = {Social media, Opinion mining, User comments, Online news, User reactions} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font