Pregled bibliografske jedinice broj: 1266691
Set-based fast gradient projection algorithm for model predictive control of grid-tied power converters
Set-based fast gradient projection algorithm for model predictive control of grid-tied power converters // Automatika : časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 64 (2023), 2; 304-314 doi:10.1080/00051144.2022.2149062 (međunarodna recenzija, pregledni rad, znanstveni)
CROSBI ID: 1266691 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Set-based fast gradient projection algorithm for model predictive
control of grid-tied power converters
Autori
Babojelić, Renato ; Vilić Belina, Bruno ; Ileš, Šandor ; Matuško, Jadranko
Izvornik
Automatika : časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije (0005-1144) 64
(2023), 2;
304-314
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, znanstveni
Ključne riječi
Power converters ; model predictive control ; robust control ; fast gradient projection method ; field programmable gate array
Sažetak
Model Predictive Control (MPC) has attracted much attention and is widely used in power electronics. However, implementing the MPC algorithm is still a difficult task due to the fast dynamics of power converters and strict time constraints. In this paper, a computationally efficient MPC algorithm for grid-tied power converters based on the fast gradient projection method and invariant set theory is proposed. The algorithm is implemented and tested through hardware-in-the-loop simulations using Texas Instruments digital signal processors and Xilinx Field Programmable Gate Arrays platforms.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Renato Babojelić
(autor)
Šandor Ileš
(autor)
Bruno Vilić Belina
(autor)
Jadranko Matuško
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus