Pregled bibliografske jedinice broj: 1266442
Quasiperiodic sets at infinity and meromorphic extensions of their fractal zeta functions
Quasiperiodic sets at infinity and meromorphic extensions of their fractal zeta functions // Bulletin of the Malaysian Mathematical Sciences Society, 46 (2023), 107, 32 doi:10.1007/s40840-023-01509-y (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1266442 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Quasiperiodic sets at infinity and meromorphic extensions of their fractal zeta functions
Autori
Radunović, Goran
Izvornik
Bulletin of the Malaysian Mathematical Sciences Society (0126-6705) 46
(2023);
107, 32
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
distance zeta function, relative fractal drum, complex dimensions, Minkowski content, Minkowski dimension
Sažetak
In this paper we introduce an interesting family of relative fractal drums (RFDs in short) at infinity and study their complex dimensions which are defined as the poles of their associated Lapidus (distance) fractal zeta functions introduced in a previous work by the author. We define the tube zeta function at infinity and obtain a functional equation connecting it to the distance zeta function at infinity much as in the classical setting. Furthermore, under suitable assumptions, we provide general results about existence of meromorphic extensions of fractal zeta functions at infinity in the Minkowski measurable and nonmeasurable case. We also provide a sufficiency condition for Minkowski measurability as well as an upper bound for the upper Minkowski content, both in terms of the complex dimensions of the associated RFD. We show that complex dimensions of quasiperiodic sets at infinity posses a quasiperiodic structure which can be either algebraic or transcedental. Furthermore, we provide an example of a maximally hyperfractal set at infinity with prescribed Minkowski dimension, i.e., a set such that the abscissa of convergence of the corresponding fractal zeta function is in fact its natural boundary.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-UIP-2017-05-1020 - Fraktalna analiza diskretnih dinamičkih sustava (DSfracta) (Resman, Maja, HRZZ - 2017-05) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Goran Radunović
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus