Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1265781

Whittaker modules for $\widehat{;mathfrak {;gl};};$ and W_{;1+∞};-modules which are not tensor products


Adamović, Dražen; Pedić Tomić, Veronika
Whittaker modules for $\widehat{;mathfrak {;gl};};$ and W_{;1+∞};-modules which are not tensor products // Letters in Mathematical Physics, 113 (2023), 2; 39, 32 doi:10.1007/s11005-023-01663-1 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1265781 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Whittaker modules for $\widehat{;mathfrak {;gl};};$ and W_{;1+∞};-modules which are not tensor products
(Whittaker modules for $\widehat{;mathfrak {;gl};};$ and W_{;1+∞}; -modules which are not tensor products)

Autori
Adamović, Dražen ; Pedić Tomić, Veronika

Izvornik
Letters in Mathematical Physics (1573-0530) 113 (2023), 2; 39, 32

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Vertex algebra, Whittaker modules · W_{;1+∞}; , Typical modules

Sažetak
We consider the Whittaker modules $M_{;1}; (\bm{;\lambda};, \bm{;\mu};)$ for the Weyl vertex algebra $M$ (also called $\beta \gamma$ vertex algebra), constructed in [ALPY], where it was proved that these modules are irreducible for each finite cyclic orbifold $M^{;\Z_n};$. In this paper, we consider the modules $M_{;1};(\bm{;\lambda};, \bm{;\mu};)$ as modules for the ${;\Z};$--orbifold of $M$, denoted by $M^0$. $M^0$ is isomorphic to the vertex algebra $\mathcal W_{;1+\infty, c=-1}; = \mathcal M(2) \otimes M_1(1)$ which is the tensor product of the Heisenberg vertex algebra $M_1(1)$ and the singlet algebra $\mathcal M(2)$ (cf. \cite{;A-singlet};, \cite{;KR};, \cite{;Wa};). Furthermore, these modules are also modules of the Lie algebra $\widehat{;\mathfrak{;gl};};$ with central charge $c=-1$. We prove that they are reducible as $\widehat{;\mathfrak{;gl};};$--modules (and therefore also as $M^0$--modules), and we completely describe their irreducible quotients $L(d, \bm{;\lambda};, \bm{;\mu};)$. We show that $L(d, \bm{;\lambda};, \bm{;\mu};)$ in most cases are not tensor product modules for the vertex algebra $ \mathcal M(2) \otimes M_1(1)$. Moreover, we show that all constructed modules are typical in the sense that they are irreducible for the Heisenberg- Virasoro vertex subalgebra of $\mathcal W_{;1+\infty, c=-1};$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Veronika Pedić (autor)

Avatar Url Dražen Adamović (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Adamović, Dražen; Pedić Tomić, Veronika
Whittaker modules for $\widehat{;mathfrak {;gl};};$ and W_{;1+∞};-modules which are not tensor products // Letters in Mathematical Physics, 113 (2023), 2; 39, 32 doi:10.1007/s11005-023-01663-1 (međunarodna recenzija, članak, znanstveni)
Adamović, D. & Pedić Tomić, V. (2023) Whittaker modules for $\widehat{;mathfrak {;gl};};$ and W_{;1+∞};-modules which are not tensor products. Letters in Mathematical Physics, 113 (2), 39, 32 doi:10.1007/s11005-023-01663-1.
@article{article, author = {Adamovi\'{c}, Dra\v{z}en and Pedi\'{c} Tomi\'{c}, Veronika}, year = {2023}, pages = {32}, DOI = {10.1007/s11005-023-01663-1}, chapter = {39}, keywords = {Vertex algebra, Whittaker modules · W\_{, 1+∞}, , Typical modules}, journal = {Letters in Mathematical Physics}, doi = {10.1007/s11005-023-01663-1}, volume = {113}, number = {2}, issn = {1573-0530}, title = {Whittaker modules for $\widehat{;mathfrak {;gl};};$ and W\_{;1+∞};-modules which are not tensor products}, keyword = {Vertex algebra, Whittaker modules · W\_{, 1+∞}, , Typical modules}, chapternumber = {39} }
@article{article, author = {Adamovi\'{c}, Dra\v{z}en and Pedi\'{c} Tomi\'{c}, Veronika}, year = {2023}, pages = {32}, DOI = {10.1007/s11005-023-01663-1}, chapter = {39}, keywords = {Vertex algebra, Whittaker modules · W\_{, 1+∞}, , Typical modules}, journal = {Letters in Mathematical Physics}, doi = {10.1007/s11005-023-01663-1}, volume = {113}, number = {2}, issn = {1573-0530}, title = {Whittaker modules for $\widehat{;mathfrak {;gl};};$ and W\_{;1+∞}; -modules which are not tensor products}, keyword = {Vertex algebra, Whittaker modules · W\_{, 1+∞}, , Typical modules}, chapternumber = {39} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font