Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1264554

Frequency and Texture Features for Iris Recognition


Tuba, Una; Tuba, Eva; Capor Hrošik, Romana; Tuba, Milan; Veinović, Mladen
Frequency and Texture Features for Iris Recognition // 30th Telecommunications Forum, TELFOR 2022 - Proceedings, 2022
Beograd: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 23-31 doi:10.1109/TELFOR56187.2022.9983787 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1264554 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Frequency and Texture Features for Iris Recognition

Autori
Tuba, Una ; Tuba, Eva ; Capor Hrošik, Romana ; Tuba, Milan ; Veinović, Mladen

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
30th Telecommunications Forum, TELFOR 2022 - Proceedings, 2022 / - Beograd : Institute of Electrical and Electronics Engineers (IEEE), 2022, 23-31

ISBN
9781665472722

Skup
30th Telecommunications Forum, TELFOR 2022 - Proceedings

Mjesto i datum
Beograd, Srbija, 15.11.2022. - 16.11.2022

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
iris recognition ; support vector machine ; local binary pattern ; discrete cosine transformation ; frequency domain ; digital image processing

Sažetak
Digital images and digital image processing have become a vital part of numerous applications, in every day life, science, security, health, etc. The iris of the human eye is a great biometric parameter that can be used for a person’s identification due to its richness and uniqueness in texture and other features. In this paper, a simple method based on the local binary pattern as a texture descriptor and frequency coefficients is proposed. After extracting the eye region, the iris region is found and features are calculated for that region of interest. A support vector machine is used for classification. The proposed method is tested on a well-known CASIA Interval-v4 dataset and the results are improved compared to methods that only use one of these features or a different set of features.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Sveučilište u Dubrovniku

Profili:

Avatar Url Romana Capor (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Tuba, Una; Tuba, Eva; Capor Hrošik, Romana; Tuba, Milan; Veinović, Mladen
Frequency and Texture Features for Iris Recognition // 30th Telecommunications Forum, TELFOR 2022 - Proceedings, 2022
Beograd: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 23-31 doi:10.1109/TELFOR56187.2022.9983787 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Tuba, U., Tuba, E., Capor Hrošik, R., Tuba, M. & Veinović, M. (2022) Frequency and Texture Features for Iris Recognition. U: 30th Telecommunications Forum, TELFOR 2022 - Proceedings, 2022 doi:10.1109/TELFOR56187.2022.9983787.
@article{article, author = {Tuba, Una and Tuba, Eva and Capor Hro\v{s}ik, Romana and Tuba, Milan and Veinovi\'{c}, Mladen}, year = {2022}, pages = {23-31}, DOI = {10.1109/TELFOR56187.2022.9983787}, keywords = {iris recognition, support vector machine, local binary pattern, discrete cosine transformation, frequency domain, digital image processing}, doi = {10.1109/TELFOR56187.2022.9983787}, isbn = {9781665472722}, title = {Frequency and Texture Features for Iris Recognition}, keyword = {iris recognition, support vector machine, local binary pattern, discrete cosine transformation, frequency domain, digital image processing}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Beograd, Srbija} }
@article{article, author = {Tuba, Una and Tuba, Eva and Capor Hro\v{s}ik, Romana and Tuba, Milan and Veinovi\'{c}, Mladen}, year = {2022}, pages = {23-31}, DOI = {10.1109/TELFOR56187.2022.9983787}, keywords = {iris recognition, support vector machine, local binary pattern, discrete cosine transformation, frequency domain, digital image processing}, doi = {10.1109/TELFOR56187.2022.9983787}, isbn = {9781665472722}, title = {Frequency and Texture Features for Iris Recognition}, keyword = {iris recognition, support vector machine, local binary pattern, discrete cosine transformation, frequency domain, digital image processing}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Beograd, Srbija} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font