Pregled bibliografske jedinice broj: 1264490
High Performance Computing Reinforcement Learning Framework for Power System Control
High Performance Computing Reinforcement Learning Framework for Power System Control // 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)
Washington (MD): Institute of Electrical and Electronics Engineers (IEEE), 2023. str. 1-5 doi:10.1109/ISGT51731.2023.10066416 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1264490 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
High Performance Computing Reinforcement Learning
Framework for Power System Control
Autori
Damjanović, Ivana ; Pavić, Ivica ; Brčić, Mario ; Jerčić, Roko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)
/ - Washington (MD) : Institute of Electrical and Electronics Engineers (IEEE), 2023, 1-5
ISBN
978-1-6654-5355-4
Skup
2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)
Mjesto i datum
Washington D.C., Sjedinjene Američke Države, 16.01.2023. - 19.01.2023
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
High-performance computing ; power system control ; , reinforcement learning
Sažetak
In this paper, the integration of a power system simulator and reinforcement learning (RL) tools and frameworks is presented. A proposed framework is easily applicable and can serve as a framework for further developing, training, and benchmarking RL algorithms on more complex tasks of power system control. The usage of standard RL frameworks enables a broad range of state-of-the-art algorithms to be implemented with high performance, scalability, and substantial code reuse. Also, the proposed framework design is suitable for scaling onto high-performance computing (HPC) clusters which significantly speeds up the computation. The IEEE 14-bus system is selected to show the simulation results of the proposed method.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Interdisciplinarne tehničke znanosti, Religijske znanosti (interdisciplinarno polje)
POVEZANOST RADA
Ustanove:
Sveučilište u Zagrebu