Pregled bibliografske jedinice broj: 1264363
Digital transformation of sustainable mobility systems using Artificial neural networks
Digital transformation of sustainable mobility systems using Artificial neural networks // International Conference on Sustainable Transport - Book of Abstracts / Vukelić, G. ; Brčić, D. (ur.).
Rijeka: Pomorski fakultet Sveučilišta u Rijeci, 2022. str. 20-20 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1264363 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Digital transformation of sustainable mobility
systems using Artificial neural networks
Autori
Kundih, David ; Biškup, Nikola ; Buntak, Krešimir
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
International Conference on Sustainable Transport - Book of Abstracts
/ Vukelić, G. ; Brčić, D. - Rijeka : Pomorski fakultet Sveučilišta u Rijeci, 2022, 20-20
ISBN
978-953-165-138-7
Skup
International Conference on Sustainable Transport (SuTra 2022)
Mjesto i datum
Opatija, Hrvatska, 29.09.2022. - 01.10.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
artificial neural networks ; digital transformation ; object detection ; sustainable mobility ; traffic systems ; YOLO object detection model
Sažetak
This paper binds the fields of artificial intelligence and sustainable mobility systems. The observed algorithm in this paper is an Artificial neural network, an essential part of the artificial intelligence model used to evaluate and predict the output based on the data set it’s being fed. Through advanced systems it is possible to collect the necessary data for the creation of predictive models with high accuracy, but highly skilled data scientists and machine learning engineers need to evaluate all the collected features and compare the utility they provide to the artificial intelligence model performance and accuracy. The goal of this research is to explore the usage of Artificial neural networks in real- time object detection models that are targeted at sustainable mobility to provide insights for the creation of a well-designed and optimized system.
Izvorni jezik
Engleski
Znanstvena područja
Tehnologija prometa i transport, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Ustanove:
Sveučilište Sjever, Koprivnica