Pregled bibliografske jedinice broj: 1264006
Metal transfer to sediments, invertebrates and fish following waterborne exposure to silver nitrate or silver sulfide nanoparticles in an indoor stream mesocosm
Metal transfer to sediments, invertebrates and fish following waterborne exposure to silver nitrate or silver sulfide nanoparticles in an indoor stream mesocosm // Science of The Total Environment, 850 (2022) doi:10.1016/j.scitotenv.2022.157912 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1264006 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Metal transfer to sediments, invertebrates and
fish following waterborne exposure to silver
nitrate or silver sulfide nanoparticles in an
indoor stream mesocosm
Autori
Clark, Nathaniel ; Vassallo, Joanne ; Silva, Patrícia V. ; Silva, Ana Rita R. ; Baccaro, Marta ; Medvešček, Neja ; Grgić, Magdalena ; Ferreira, Abel ; Busquets-Fité, Martí ; Jurkschat, Kerstin ; Papadiamantis, Anastasios G. ; Puntes, Victor ; Lynch, Iseult ; Svendsen, Claus ; van den Brink, Nico W. ; van Gestel, Cornelis A.M. ; Loureiro, Susana ; Handy, Richard D.
Izvornik
Science of The Total Environment (0048-9697) 850
(2022);
157912, 0
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Freshwater sediments ; Engineered nanomaterials ; Benthic and planktonic invertebrates ; TroutSilver uptake ; Metal partitioning
Sažetak
The fate of engineered nanomaterials in ecosystems is unclear. An aquatic stream mesocosm explored the fate and bio-accumulation of silver sulfide nanoparticles (Ag2S NPs) compared to silver nitrate (AgNO3). The aims were to deter-mine the total Ag in water, sediment and biota, and to evaluate the bioavailable fractions of silver in the sediment using a serial extraction method. The total Ag in the water column from a nominal daily dose of 10 mu g L-1 of Ag for the AgNO3 or Ag2S NP treatments reached a plateau of around 13 and 12 mu g L-1, respectively, by the end of the study. Similarly, the sediment of both Ag-treatments reached-380 mu g Ag kg(-1), and with most of it being acid-extractable/labile. The biota accumulated 4-59 mu g Ag g(-1) dw, depending on the type of Ag-treatment and organism. The oligochaete worm, Lumbriculus variegatus, accumulated Ag from the Ag2S exposure over time, which was similar to the AgNO3 treatment by the end of the experiment. The planarian, Girardia tigrina, and the chironomid larva, Chironomus riparius, showed much higher Ag concentrations than the oligochaete worms ; and with a clearer time-dependent statistically significant Ag accumulation relative to the untreated controls. For the pulmonate snail, Physa acuta, bioaccumulation of Ag from AgNO3 and Ag2S NP exposures was observed, but was lower from the nano treat-ment. The AgNO(3 )exposure caused appreciable Ag accumulation in the water flea, Daphnia magna, but accumulation was higher in the Ag2S NP treatment (reaching 59 mu g g(-1) dw). In the rainbow trout, Oncorhynchus mykiss, AgNO3, but not Ag2S NPs, caused total Ag concentrations to increase in the tissues. Overall, the study showed transfer of total Ag from the water column to the sediment, and Ag bioaccumulation in the biota, with Ag from Ag2S NP exposure generally being less bioavailable than that from AgNO3.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Biologija, Biotehnologija
POVEZANOST RADA
Ustanove:
Sveučilište u Osijeku - Odjel za biologiju
Profili:
Magdalena Grgić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE