Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1263938

Numerical modeling of the hydraulic GEROLER motor using the artificial neural network


Gregov, Goran
Numerical modeling of the hydraulic GEROLER motor using the artificial neural network // Engineering review (Technical Faculty University of Rijeka), 42 (2022), 2; 91-100 doi:10.30765/er.1813 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1263938 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Numerical modeling of the hydraulic GEROLER motor using the artificial neural network

Autori
Gregov, Goran

Izvornik
Engineering review (Technical Faculty University of Rijeka) (1330-9587) 42 (2022), 2; 91-100

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Hydraulic motor ; GEROLER ; Predictive model ; Artificial neural network

Sažetak
GEROLER hydraulic motors are known for their good value for money and their balance between simplicity, robustness, compactness, versatility and noise. Compared to axial hydraulic motors, GEROLER motors still represent a research area with the possibility of a significant contribution in terms of nonlinear dynamic behavior analysis. The aim of this research was experimental analysis of GEROLER motor dynamics at uneven load torque. Based on the obtained laboratory measurements, a black-box model for predicting the operating parameters using the artificial neural networks was developed. Two different neural network architectures were used: the simpler static multilayer feed-forward network and the more complex dynamic NARX neural network. From the obtained results, it appears that the multilayer feed-forward neural network provides acceptable results, while the dynamic NARX neural network provides more favorable results due to its flexibility in dealing with nonlinear dynamic systems. The research conducted represents a new approach for modeling and predictive analysis of the GEROLER engine.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Goran Gregov (autor)

Poveznice na cjeloviti tekst rada:

doi er.riteh.hr

Citiraj ovu publikaciju:

Gregov, Goran
Numerical modeling of the hydraulic GEROLER motor using the artificial neural network // Engineering review (Technical Faculty University of Rijeka), 42 (2022), 2; 91-100 doi:10.30765/er.1813 (međunarodna recenzija, članak, znanstveni)
Gregov, G. (2022) Numerical modeling of the hydraulic GEROLER motor using the artificial neural network. Engineering review (Technical Faculty University of Rijeka), 42 (2), 91-100 doi:10.30765/er.1813.
@article{article, author = {Gregov, Goran}, year = {2022}, pages = {91-100}, DOI = {10.30765/er.1813}, keywords = {Hydraulic motor, GEROLER, Predictive model, Artificial neural network}, journal = {Engineering review (Technical Faculty University of Rijeka)}, doi = {10.30765/er.1813}, volume = {42}, number = {2}, issn = {1330-9587}, title = {Numerical modeling of the hydraulic GEROLER motor using the artificial neural network}, keyword = {Hydraulic motor, GEROLER, Predictive model, Artificial neural network} }
@article{article, author = {Gregov, Goran}, year = {2022}, pages = {91-100}, DOI = {10.30765/er.1813}, keywords = {Hydraulic motor, GEROLER, Predictive model, Artificial neural network}, journal = {Engineering review (Technical Faculty University of Rijeka)}, doi = {10.30765/er.1813}, volume = {42}, number = {2}, issn = {1330-9587}, title = {Numerical modeling of the hydraulic GEROLER motor using the artificial neural network}, keyword = {Hydraulic motor, GEROLER, Predictive model, Artificial neural network} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font