Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1262271

Color image segmentation based on thresholding for advanced driver assistance systems


Budak, Luka; Grbić, Ratko; Četić, Nenad; Kaštelan, Ivan
Color image segmentation based on thresholding for advanced driver assistance systems // 2022 IEEE Zooming Innovaton in Consumer Technologies Conference (ZINC)
Novi Sad, Srbija, 2022. str. 271-277 doi:10.1109/ZINC55034.2022.9840722 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1262271 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Color image segmentation based on thresholding for advanced driver assistance systems

Autori
Budak, Luka ; Grbić, Ratko ; Četić, Nenad ; Kaštelan, Ivan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
2022 IEEE Zooming Innovaton in Consumer Technologies Conference (ZINC) / - , 2022, 271-277

ISBN
978-1-6654-8374-2

Skup
2022 IEEE Zooming Innovation in Consumer Technologies Conference (ZINC)

Mjesto i datum
Novi Sad, Srbija, 25.05.2022. - 26.05.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
ADAS ; image segmentation ; image thresholding ; VisionSDK ; TDA2xx

Sažetak
Many Advanced Driver Assistance Systems (ADASs) rely on an image obtained by a camera that is mounted on a vehicle. To get useful information in real-time, the acquired image is processed with different computer vision algorithms running on the vehicle's embedded platform. The common preprocessing task is the image segmentation based on color which is often used in lane detection or traffic light/sign recognition algorithms to extract key regions. In this paper, we focus on a color image segmentation based on thresholding. While being very simple, its effectiveness largely depends on the details of the implementation such as the chosen color space or characteristics of the used embedded platform. We provide details regarding PC implementation and ADAS development board implementation as well as the details regarding optimizations that are carried out to achieve smaller execution time on PC and board's Texas Instruments TDA2xx System-On-Chip. The image segmentation mean processing time is reported for three different resolutions and three different color models (RGB, HSV, YUV) for both PC and ADAS development board. The obtained results can help in planning and allocating resources on the vehicle's embedded platform for such computer vision tasks.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Ratko Grbić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Budak, Luka; Grbić, Ratko; Četić, Nenad; Kaštelan, Ivan
Color image segmentation based on thresholding for advanced driver assistance systems // 2022 IEEE Zooming Innovaton in Consumer Technologies Conference (ZINC)
Novi Sad, Srbija, 2022. str. 271-277 doi:10.1109/ZINC55034.2022.9840722 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Budak, L., Grbić, R., Četić, N. & Kaštelan, I. (2022) Color image segmentation based on thresholding for advanced driver assistance systems. U: 2022 IEEE Zooming Innovaton in Consumer Technologies Conference (ZINC) doi:10.1109/ZINC55034.2022.9840722.
@article{article, author = {Budak, Luka and Grbi\'{c}, Ratko and \v{C}eti\'{c}, Nenad and Ka\v{s}telan, Ivan}, year = {2022}, pages = {271-277}, DOI = {10.1109/ZINC55034.2022.9840722}, keywords = {ADAS, image segmentation, image thresholding, VisionSDK, TDA2xx}, doi = {10.1109/ZINC55034.2022.9840722}, isbn = {978-1-6654-8374-2}, title = {Color image segmentation based on thresholding for advanced driver assistance systems}, keyword = {ADAS, image segmentation, image thresholding, VisionSDK, TDA2xx}, publisherplace = {Novi Sad, Srbija} }
@article{article, author = {Budak, Luka and Grbi\'{c}, Ratko and \v{C}eti\'{c}, Nenad and Ka\v{s}telan, Ivan}, year = {2022}, pages = {271-277}, DOI = {10.1109/ZINC55034.2022.9840722}, keywords = {ADAS, image segmentation, image thresholding, VisionSDK, TDA2xx}, doi = {10.1109/ZINC55034.2022.9840722}, isbn = {978-1-6654-8374-2}, title = {Color image segmentation based on thresholding for advanced driver assistance systems}, keyword = {ADAS, image segmentation, image thresholding, VisionSDK, TDA2xx}, publisherplace = {Novi Sad, Srbija} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font