Pregled bibliografske jedinice broj: 1261476
Mahavier product and topological entropy
Mahavier product and topological entropy // Dubrovnik VIII - Geometric Topology, Geometric Group Theory & Dynamical Systems, Booklet
Dubrovnik, Hrvatska, 2015. str. 38-39 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1261476 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Mahavier product and topological entropy
Autori
Erceg, Goran ; Kennedy, Judy
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Dubrovnik VIII - Geometric Topology, Geometric Group Theory & Dynamical Systems, Booklet
/ - , 2015, 38-39
Skup
Dubrovnik VIII - Geometric Topology, Geometric Group Theory & Dynamical Systems
Mjesto i datum
Dubrovnik, Hrvatska, 22.06.2015. - 26.06.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Generalized inverse limit ; Topological entropy ; Invariant Cantor set ; Subshift of finite type ; Mahavier product
Sažetak
We introduce new definition of topological entropy, which is given in terms of a new tool, the Mahavier product which was introduced by Judy Kennedy and Sina Greenwood. Suppose that X, Y and Z are topological spaces, and A ⊂ X×Y, B ⊂ Y×Z. Then we define the Mahavier product of A and B as set {;(x, y, z) ∈ X×Y×Z : (x, y) ∈ A and (y, z) ∈ B};. We calculate topological entropy using covers of Mahavier product. By using the entropy of the shift map (a function in the usual sense) it is shown that this generalization of the notion of entropy has many of the same properties as those for entropy in regular functions. We will show the entropy of some new ones and some well-known examples.
Izvorni jezik
Engleski
Znanstvena područja
Matematika