Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1260568

Application of Machine Learning Methods for Data Analytics in Social Sciences


Oreški, Dijana
Application of Machine Learning Methods for Data Analytics in Social Sciences // WSEAS transactions on systems, 22 (2023), 8; 69-72 doi:10.37394/23202.2023.22.8 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1260568 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Application of Machine Learning Methods for Data Analytics in Social Sciences

Autori
Oreški, Dijana

Izvornik
WSEAS transactions on systems (1109-2777) 22 (2023), 8; 69-72

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Computational intelligence ; data mining ; data science ; machine learning ; social sciences ; business.

Sažetak
This article addresses the challenges in the application of artificial intelligence methods such as machine learning, computational intelligence and/or soft computing methods in social sciences. The literature review is performed in order to give a review of different approaches and methods that have been applied so far. The most used method in social sciences and management is the SWOT method, for the identification of strengths, weaknesses, opportunities, and threats when making strategic decisions. Two fundamental characteristics of previous approaches are the development of numerical models of utility functions and the possibility of upgrading these models by formalizing the intuition of strategic decision- makers. There are several shortcomings of the existing approaches. The application of computational intelligence and machine learning methods in social sciences is identified as one of the most challenging and promising areas, which could overcome identified shortcomings. The principles of one popular machine learning method, the decision tree, are explained and a demonstration is performed on the case study of churn prediction. Benchmarking data set from the publicly available repository is used to demonstrate the suggested approach. Evaluation results measured through model accuracy and reliability gave promising results for further analysis. A developed predictive model could serve as a standalone tool or as support for decision- making in social sciences.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)

Ustanove:
Fakultet organizacije i informatike, Varaždin

Profili:

Avatar Url Dijana Oreški (autor)

Poveznice na cjeloviti tekst rada:

doi wseas.com

Citiraj ovu publikaciju:

Oreški, Dijana
Application of Machine Learning Methods for Data Analytics in Social Sciences // WSEAS transactions on systems, 22 (2023), 8; 69-72 doi:10.37394/23202.2023.22.8 (međunarodna recenzija, članak, znanstveni)
Oreški, D. (2023) Application of Machine Learning Methods for Data Analytics in Social Sciences. WSEAS transactions on systems, 22 (8), 69-72 doi:10.37394/23202.2023.22.8.
@article{article, author = {Ore\v{s}ki, Dijana}, year = {2023}, pages = {69-72}, DOI = {10.37394/23202.2023.22.8}, keywords = {Computational intelligence, data mining, data science, machine learning, social sciences, business.}, journal = {WSEAS transactions on systems}, doi = {10.37394/23202.2023.22.8}, volume = {22}, number = {8}, issn = {1109-2777}, title = {Application of Machine Learning Methods for Data Analytics in Social Sciences}, keyword = {Computational intelligence, data mining, data science, machine learning, social sciences, business.} }
@article{article, author = {Ore\v{s}ki, Dijana}, year = {2023}, pages = {69-72}, DOI = {10.37394/23202.2023.22.8}, keywords = {Computational intelligence, data mining, data science, machine learning, social sciences, business.}, journal = {WSEAS transactions on systems}, doi = {10.37394/23202.2023.22.8}, volume = {22}, number = {8}, issn = {1109-2777}, title = {Application of Machine Learning Methods for Data Analytics in Social Sciences}, keyword = {Computational intelligence, data mining, data science, machine learning, social sciences, business.} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font