Pregled bibliografske jedinice broj: 1260350
Deriving and validating emotional dimensions from textual data
Deriving and validating emotional dimensions from textual data // Expert systems with applications, 198 (2022), 116721, 14 doi:10.1016/j.eswa.2022.116721 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1260350 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deriving and validating emotional dimensions from
textual data
Autori
Grgic, Demijan ; Podobnik, Vedran ; Carvalho, Arthur
Izvornik
Expert systems with applications (0957-4174) 198
(2022);
116721, 14
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Core affects ; Dimensional models of emotion ; Eigenvector analysis ; Human emotions ; NRC EmoLex lexicon ; VAD lexicon
Sažetak
This paper proposes and analyzes a methodology for extracting the underlying emotional dimensions connected to different textual data, including social-media posts and online reviews. Our experiments result in a coherent conclusion across all 16 studied datasets. In particular, the found orthogonal emotional dimensions are a combination of valence (positive–negative sentiment), activation arousal (arousal–dominance), and expectancy tension (the intensity of the expectations concerning the future). We confirm the existence of both valence and arousal as core dimensions. On the other hand, dominance appears as an attribute connected to the variability of both valence and activation arousal dimensions. We also find some evidence for the existence of an “unpredictability/novelty” dimension discussed in recent academic work. Our key empirical contribution is that an additional orthogonal emotional dimension should be defined and named “expectancy tension” in that it captures the variability linked to the intensity of expectations regarding the future. Finally, our work contributes to the social computing literature by suggesting a novel methodology to derive emotional spaces from multiple textual data through eigenvector analyses.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti, Interdisciplinarne društvene znanosti
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus