Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1260162

Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering


Vlašić, Tin; Nguyen, Hieu; Khorashadizadeh, AmirEhsan; Dokmanić, Ivan
Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering // Proceedings of the 2022 56th Asilomar Conference on Signals, Systems, and Computers
Pacific Grove (CA), Sjedinjene Američke Države, 2022. str. 947-952 doi:10.1109/IEEECONF56349.2022.10052055 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1260162 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering

Autori
Vlašić, Tin ; Nguyen, Hieu ; Khorashadizadeh, AmirEhsan ; Dokmanić, Ivan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2022 56th Asilomar Conference on Signals, Systems, and Computers / - , 2022, 947-952

Skup
2022 56th Asilomar Conference on Signals, Systems, and Computers

Mjesto i datum
Pacific Grove (CA), Sjedinjene Američke Države, 31.10.2022. - 02.11.2022

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Helmholtz equation ; implicit boundary integral method ; inverse scattering problem ; signed distance function

Sažetak
Implicit representation of shapes as level sets of multilayer perceptrons has recently flourished in different shape analysis, compression, and reconstruction tasks. In this paper, we introduce an implicit neural representation-based framework for solving the inverse obstacle scattering problem in a mesh-free fashion. We express the obstacle shape as the zero-level set of a signed distance function which is implicitly determined by network parameters. To solve the direct scattering problem, we implement the implicit boundary integral method. It uses projections of the grid points in the tubular neighborhood onto the boundary to compute the PDE solution directly in the level-set framework. The proposed implicit representation conveniently handles the shape perturbation in the optimization process. To update the shape, we use PyTorch's automatic differentiation to backpropagate the loss function w.r.t. the network parameters, allowing us to avoid complex and error-prone manual derivation of the shape derivative. Additionally, we propose a deep generative model of implicit neural shape representations that can fit into the framework. The deep generative model effectively regularizes the inverse obstacle scattering problem, making it more tractable and robust, while yielding high-quality reconstruction results even in noise-corrupted setups.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-6703 - Renesansa teorije uzorkovanja (SamplingRenaissance) (Seršić, Damir, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Tin Vlašić (autor)

Avatar Url Ivan Dokmanić (autor)

Poveznice na cjeloviti tekst rada:

doi arxiv.org ieeexplore.ieee.org

Citiraj ovu publikaciju:

Vlašić, Tin; Nguyen, Hieu; Khorashadizadeh, AmirEhsan; Dokmanić, Ivan
Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering // Proceedings of the 2022 56th Asilomar Conference on Signals, Systems, and Computers
Pacific Grove (CA), Sjedinjene Američke Države, 2022. str. 947-952 doi:10.1109/IEEECONF56349.2022.10052055 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Vlašić, T., Nguyen, H., Khorashadizadeh, A. & Dokmanić, I. (2022) Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering. U: Proceedings of the 2022 56th Asilomar Conference on Signals, Systems, and Computers doi:10.1109/IEEECONF56349.2022.10052055.
@article{article, author = {Vla\v{s}i\'{c}, Tin and Nguyen, Hieu and Khorashadizadeh, AmirEhsan and Dokmani\'{c}, Ivan}, year = {2022}, pages = {947-952}, DOI = {10.1109/IEEECONF56349.2022.10052055}, keywords = {Helmholtz equation, implicit boundary integral method, inverse scattering problem, signed distance function}, doi = {10.1109/IEEECONF56349.2022.10052055}, title = {Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering}, keyword = {Helmholtz equation, implicit boundary integral method, inverse scattering problem, signed distance function}, publisherplace = {Pacific Grove (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Vla\v{s}i\'{c}, Tin and Nguyen, Hieu and Khorashadizadeh, AmirEhsan and Dokmani\'{c}, Ivan}, year = {2022}, pages = {947-952}, DOI = {10.1109/IEEECONF56349.2022.10052055}, keywords = {Helmholtz equation, implicit boundary integral method, inverse scattering problem, signed distance function}, doi = {10.1109/IEEECONF56349.2022.10052055}, title = {Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering}, keyword = {Helmholtz equation, implicit boundary integral method, inverse scattering problem, signed distance function}, publisherplace = {Pacific Grove (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font