Pregled bibliografske jedinice broj: 1259918
Coinciding Mean of the Two Symmetries on the Set of Mean Functions
Coinciding Mean of the Two Symmetries on the Set of Mean Functions // Axioms, 12 (2023), 3; 238, 15 doi:10.3390/axioms12030238 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1259918 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Coinciding Mean of the Two Symmetries on the Set of
Mean Functions
Autori
Mihoković, Lenka
Izvornik
Axioms (2075-1680) 12
(2023), 3;
238, 15
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
mean ; asymptotic expansion ; symmetry ; Catalan numbers
Sažetak
On the set $\mathcal M$ of mean functions, the symmetric mean of $M$ with respect to mean $M_0$ can be defined in several ways. The first one is related to the group structure on $\mathcal M$, and the second one is defined trough Gauss' functional equation. In this paper, we provide an answer to the open question formulated by B.\ Farhi about the matching of these two different mappings called symmetries on the set of mean functions. Using techniques of asymptotic expansions developed by T.\ Buri\'c, N.\ Elezovi\'c, and L.\ Mihokovi\'c (Vuk\v si\'c), we discuss some properties of such symmetries trough connection with asymptotic expansions of means involved. As a result of coefficient comparison, a new class of means was discovered, which interpolates between harmonic, geometric, and arithmetic mean.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Lenka Mihoković
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus