Pregled bibliografske jedinice broj: 125988
Weighted integral inequalities for Hardy and geometric mean operators with kernels over cones in R^n
Weighted integral inequalities for Hardy and geometric mean operators with kernels over cones in R^n // Italian Journal of Pure and Applied Mathematics, 18 (2005), 89-118 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 125988 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Weighted integral inequalities for Hardy and geometric mean operators with kernels over cones in R^n
Autori
Čižmešija, Aleksandra ; Persson, Lars-Erik ; Wedestig, Anna
Izvornik
Italian Journal of Pure and Applied Mathematics (1126-8042) 18
(2005);
89-118
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
integral inequalities; weights; Hardy-type operator; geometric mean operator; kernel; Oinarov condition; cones
Sažetak
In this paper we prove criteria for boundedness of a general multidimensional Hardy-type integral operator with an Oinarov kernel and of the related limiting geometric mean operator between two Lebesgue spaces. The integrals are taken over cones in R^n with the origin as a vertex. We also obtain two-sided estimates, that is, lower and upper bounds for the L^p_v --> L^q_u norms of these operators for all p and q satisfying 1 < p < infty, 0 < q < infty for the Hardy-type operator case, and 0 < p, q < infty for the geometric mean operator case.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037119
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Aleksandra Čižmešija
(autor)