Pregled bibliografske jedinice broj: 1259069
Fibonacci and Lucas numbers as products of three repdigits in base g
Fibonacci and Lucas numbers as products of three repdigits in base g // Rendiconti del Circolo Matematico di Palermo (2024) (znanstveni, prihvaćen)
CROSBI ID: 1259069 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fibonacci and Lucas numbers as products of three repdigits in base g
Autori
Adedji, Kouessi Norbert ; Filipin, Alan ; Togbe, Alain
Vrsta, podvrsta
Radovi u časopisima,
znanstveni
Izvornik
Rendiconti del Circolo Matematico di Palermo (2024)
Status rada
Prihvaćen
Ključne riječi
Fibonacci numbers ; Lucas numbers ; Mersenne numbers ; Diophantine equations ; g repdigit ; Linear forms in logarithms ; Reduction method
Sažetak
Recall that repdigit in base g is a positive integer that has only one digit in its base g expansion, i.e. a number of the form a(g^m-1)/(g−1), for some positive integers m ≥ 1, g ≥ 2 and 1 ≤ a ≤ g − 1. In the present study, we investigate all Fibonacci or Lucas numbers which are expressed as products of three repdigits in base g. As illustration, we consider the case g = 10 where we show that the numbers 144 and 18 are the largest Fibonacci and Lucas numbers which can be expressible as products of three repdigits respectively. All this is done using linear forms in logarithms of algebraic numbers.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-1313 - Diofantska geometrija i primjene (DIOPHANT) (Kazalicki, Matija, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Alan Filipin
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus