Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1258739

In Silico Prediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach


Daghighi, Amirreza; Casanola-Martin, Gerardo M.; Timmerman, Troy; Milenković, Dejan; Lučić, Bono; Rasulev, Bakhtiyor
In Silico Prediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach // Toxics, 10 (2022), 12; 746, 14 doi:10.3390/toxics10120746 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1258739 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
In Silico Prediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach

Autori
Daghighi, Amirreza ; Casanola-Martin, Gerardo M. ; Timmerman, Troy ; Milenković, Dejan ; Lučić, Bono ; Rasulev, Bakhtiyor

Izvornik
Toxics (2305-6304) 10 (2022), 12; 746, 14

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
toxicity, nitroaromatic compounds, QSAR, QSTR, machine learning, Accumulated Local Effect, support vector machine, ensemble model

Sažetak
In this work, a dataset of more than 200 nitroaromatic compounds is used to develop Quantitative Structure-Activity Relationship (QSAR) models for the estimation of in vivo toxicity based on 50% lethal dose to rats (LD50). An initial set of 4885 molecular descriptors was generated and applied to build Support Vector Regression (SVR) models. The best two SVR models, SVR_A and SVR_B, were selected to build an Ensemble Model by means of Multiple Linear Regression (MLR). The obtained Ensemble Model showed improved performance over the base SVR models in the training set (R-2 = 0.88), validation set (R-2 = 0.95), and true external test set (R-2 = 0.92). The models were also internally validated by 5-fold cross-validation and Y-scrambling experiments, showing that the models have high levels of goodness-of-fit, robustness and predictivity. The contribution of descriptors to the toxicity in the models was assessed using the Accumulated Local Effect (ALE) technique. The proposed approach provides an important tool to assess toxicity of nitroaromatic compounds, based on the ensemble QSAR model and the structural relationship to toxicity by analyzed contribution of the involved descriptors.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Kemijsko inženjerstvo, Računarstvo

Napomena
Basic grant of MZO/RBI to Bono Lučić, NSF
MRI Award No. 2019077, ND EPSCoR Award #IIA-1355466,
DOE DE-SC0021287, FAR0032957, TG-DMR110088 and NDSU
grant



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Bono Lučić (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com fulir.irb.hr

Citiraj ovu publikaciju:

Daghighi, Amirreza; Casanola-Martin, Gerardo M.; Timmerman, Troy; Milenković, Dejan; Lučić, Bono; Rasulev, Bakhtiyor
In Silico Prediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach // Toxics, 10 (2022), 12; 746, 14 doi:10.3390/toxics10120746 (međunarodna recenzija, članak, znanstveni)
Daghighi, A., Casanola-Martin, G., Timmerman, T., Milenković, D., Lučić, B. & Rasulev, B. (2022) In Silico Prediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach. Toxics, 10 (12), 746, 14 doi:10.3390/toxics10120746.
@article{article, author = {Daghighi, Amirreza and Casanola-Martin, Gerardo M. and Timmerman, Troy and Milenkovi\'{c}, Dejan and Lu\v{c}i\'{c}, Bono and Rasulev, Bakhtiyor}, year = {2022}, pages = {14}, DOI = {10.3390/toxics10120746}, chapter = {746}, keywords = {toxicity, nitroaromatic compounds, QSAR, QSTR, machine learning, Accumulated Local Effect, support vector machine, ensemble model}, journal = {Toxics}, doi = {10.3390/toxics10120746}, volume = {10}, number = {12}, issn = {2305-6304}, title = {In Silico Prediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach}, keyword = {toxicity, nitroaromatic compounds, QSAR, QSTR, machine learning, Accumulated Local Effect, support vector machine, ensemble model}, chapternumber = {746} }
@article{article, author = {Daghighi, Amirreza and Casanola-Martin, Gerardo M. and Timmerman, Troy and Milenkovi\'{c}, Dejan and Lu\v{c}i\'{c}, Bono and Rasulev, Bakhtiyor}, year = {2022}, pages = {14}, DOI = {10.3390/toxics10120746}, chapter = {746}, keywords = {toxicity, nitroaromatic compounds, QSAR, QSTR, machine learning, Accumulated Local Effect, support vector machine, ensemble model}, journal = {Toxics}, doi = {10.3390/toxics10120746}, volume = {10}, number = {12}, issn = {2305-6304}, title = {In Silico Prediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach}, keyword = {toxicity, nitroaromatic compounds, QSAR, QSTR, machine learning, Accumulated Local Effect, support vector machine, ensemble model}, chapternumber = {746} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font