Pregled bibliografske jedinice broj: 1258003
The total number of white matter interstitial neurons in the human brain
The total number of white matter interstitial neurons in the human brain // Journal of anatomy, 235 (2019), 3; 626-636 doi:10.1111/joa.13018 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1258003 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The total number of white matter interstitial
neurons in the human brain
Autori
Sedmak, Goran ; Judaš, Miloš
Izvornik
Journal of anatomy (0021-8782) 235
(2019), 3;
626-636
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
NeuN ; human brain ; stereology ; subplate neurons ; white matter neurons.
Sažetak
In the adult human brain, the interstitial neurons (WMIN) of the subcortical white matter are the surviving remnants of the fetal subplate zone. It has been suggested that they perform certain important functions and may be involved in the pathogenesis of several neurological and psychiatric disorders. However, many important features of this class of human cortical neurons remain insufficiently explored. In this study, we analyzed the total number, and regional and topological distribution of WMIN in the adult human subcortical white matter, using a combined immunocytochemical (NeuN) and stereological approaches. We found that the average number of WMIN in 1 mm3 of the subcortical white matter is 1.230 ± 549, which translates to the average total number of 593 811 183.6 ± 264 849 443.35 of WMIN in the entire subcortical telencephalic white matter. While there were no significant differences in their regional distribution, the lowest number of WMIN has been consistently observed in the limbic cortex, and the highest number in the frontal cortex. With respect to their topological distribution, the WMIN were consistently more numerous within gyral crowns, less numerous along gyral walls and least numerous at the bottom of cortical sulci (where they occupy a narrow and compact zone below the cortical-white matter border). The topological location of WMIN is also significantly correlated with their morphology: pyramidal and multipolar forms are the most numerous within gyral crowns, whereas bipolar forms predominate at the bottom of cortical sulci. Our results indicate that WMIN represent substantial neuronal population in the adult human cerebral cortex (e.g. more numerous than thalamic or basal ganglia neurons) and thus deserve more detailed morphological and functional investigations in the future.
Izvorni jezik
Engleski
Znanstvena područja
Temeljne medicinske znanosti
POVEZANOST RADA
Projekti:
--KK.01.1.1.01.0007 - Znanstveni centar izvrnosti - Eksperimentalna i klinička istraživanja hipoksijsko-ishemijskog oštećenja mozga u perinatalnoj i odrasloj dobi (ZCI - NEURO) (Judaš, Miloš) ( CroRIS)
Ustanove:
Medicinski fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE