Pregled bibliografske jedinice broj: 1257984
Soybean yield prediction based on irrigation and nitrogen fertilization using machine learning
Soybean yield prediction based on irrigation and nitrogen fertilization using machine learning // Book of Abstracts Digital Technologies in Agriculture No1/2022
Osijek: Fakultet agrobiotehničkih znanosti Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2022. str. 24-24 (poster, međunarodna recenzija, prošireni sažetak, ostalo)
CROSBI ID: 1257984 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Soybean yield prediction based on irrigation and
nitrogen fertilization using machine learning
Autori
Galić Subašić, Daria ; Jurišić, Mladen ; Radočaj, Dorijan ; Plaščak, Ivan ; Rapčan, Irena
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, prošireni sažetak, ostalo
Izvornik
Book of Abstracts Digital Technologies in Agriculture No1/2022
/ - Osijek : Fakultet agrobiotehničkih znanosti Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2022, 24-24
ISBN
978-953-8421-03-7
Skup
1st International Symposium on Digital Technologies in Agriculture
Mjesto i datum
Osijek, Hrvatska, 06.12.2022. - 08.12.2022
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
crop management, regression algorithms, random forest, extreme gradient boost, decision trees
Sažetak
The production of soybean (Glycine max L. Merr.) has increased significantly in recent years and represents one of the most important highly profitable legumes. Multiple linear regression (MLR) represented a conventional prediction approach and served as the baseline for evaluating the efficiency of machine learning algorithms for the prediction of soybean yield according to irrigation and nitrogen fertilization. Random forest and Extreme gradient boost outperformed the conventional Multiple linear regression according to all three metrics, producing 9.7% and 9.5% higher R2 than baseline.
Izvorni jezik
Engleski
Znanstvena područja
Poljoprivreda (agronomija), Interdisciplinarne biotehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet agrobiotehničkih znanosti Osijek
Profili:
Ivan Plaščak
(autor)
Dorijan Radočaj
(autor)
Irena Rapčan
(autor)
Daria Galić Subasić
(autor)
Mladen Jurišić
(autor)