Pregled bibliografske jedinice broj: 1257799
Quantitative bounds for products of simplices in subsets of the unit cube
Quantitative bounds for products of simplices in subsets of the unit cube // Israel journal of mathematics (2023) (znanstveni, prihvaćen)
CROSBI ID: 1257799 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Quantitative bounds for products of simplices in
subsets of the unit cube
Autori
Durcik, Polona ; Stipčić, Mario
Vrsta, podvrsta
Radovi u časopisima,
znanstveni
Izvornik
Israel journal of mathematics (2023)
Status rada
Prihvaćen
Ključne riječi
Euclidean Ramsey theory, point configuration, singular integral
Sažetak
For each 1≤i≤n, let ki≥1 and let Δi be a set of vertices of a non-degenerate simplex of ki+1 points in Rki+1. If A⊆[0, 1]k1+1×⋯×[0, 1]kn+1 is a Lebesgue measurable set of measure at least δ, we show that there exists an interval I=I(Δ1, …, Δn, A) of length at least exp(−δ−C(Δ1, …, Δn)) such that for each λ∈I, the set A contains Δ′1×⋯×Δ′n, where each Δ′i is an isometric copy of λΔi. This is a quantitative improvement of a result by Lyall and Magyar. Our proof relies on harmonic analysis. The main ingredient in the proof are cancellation estimates for forms similar to multilinear singular integrals associated with n-partite n- regular hypergraphs.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-UIP-2017-05-4129 - Multilinearna i nelinearna harmonijska analiza i primjene (MUNHANAP) (Kovač, Vjekoslav, HRZZ ) ( CroRIS)
Profili:
Mario Stipčić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus