Pregled bibliografske jedinice broj: 1257695
The matrix-weighted dyadic convex body maximal operator is not bounded
The matrix-weighted dyadic convex body maximal operator is not bounded // Advances in Mathematics, 410, Part A (2022), 108711, 16 doi:10.1016/j.aim.2022.108711 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1257695 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The matrix-weighted dyadic convex body maximal
operator is not bounded
Autori
Nazarov, Fedor ; Petermichl, Stefanie ; Škreb, Kristina Ana ; Treil, Sergei
Izvornik
Advances in Mathematics (0001-8708) 410, Part A
(2022);
108711, 16
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Matrix weight ; Maximal function ; Convex body
Sažetak
The convex body maximal operator is a natural generalization of the Hardy–Littlewood maximal operator. In this paper we are considering its dyadic version in the presence of a matrix weight. To our surprise it turns out that this operator is not bounded. This is in a sharp contrast to a Doob's inequality in this context. At first, we show that the convex body Carleson Embedding Theorem with matrix weight fails. We then deduce the unboundedness of the matrix-weighted convex body maximal operator.
Izvorni jezik
Engleski
POVEZANOST RADA
Projekti:
HRZZ-UIP-2017-05-4129 - Multilinearna i nelinearna harmonijska analiza i primjene (MUNHANAP) (Kovač, Vjekoslav, HRZZ ) ( CroRIS)
Profili:
Kristina Ana Škreb
(autor)