Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1257695

The matrix-weighted dyadic convex body maximal operator is not bounded


Nazarov, Fedor; Petermichl, Stefanie; Škreb, Kristina Ana; Treil, Sergei
The matrix-weighted dyadic convex body maximal operator is not bounded // Advances in Mathematics, 410, Part A (2022), 108711, 16 doi:10.1016/j.aim.2022.108711 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1257695 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The matrix-weighted dyadic convex body maximal operator is not bounded

Autori
Nazarov, Fedor ; Petermichl, Stefanie ; Škreb, Kristina Ana ; Treil, Sergei

Izvornik
Advances in Mathematics (0001-8708) 410, Part A (2022); 108711, 16

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Matrix weight ; Maximal function ; Convex body

Sažetak
The convex body maximal operator is a natural generalization of the Hardy–Littlewood maximal operator. In this paper we are considering its dyadic version in the presence of a matrix weight. To our surprise it turns out that this operator is not bounded. This is in a sharp contrast to a Doob's inequality in this context. At first, we show that the convex body Carleson Embedding Theorem with matrix weight fails. We then deduce the unboundedness of the matrix-weighted convex body maximal operator.

Izvorni jezik
Engleski



POVEZANOST RADA


Projekti:
HRZZ-UIP-2017-05-4129 - Multilinearna i nelinearna harmonijska analiza i primjene (MUNHANAP) (Kovač, Vjekoslav, HRZZ ) ( CroRIS)

Profili:

Avatar Url Kristina Ana Škreb (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Nazarov, Fedor; Petermichl, Stefanie; Škreb, Kristina Ana; Treil, Sergei
The matrix-weighted dyadic convex body maximal operator is not bounded // Advances in Mathematics, 410, Part A (2022), 108711, 16 doi:10.1016/j.aim.2022.108711 (međunarodna recenzija, članak, znanstveni)
Nazarov, F., Petermichl, S., Škreb, K. & Treil, S. (2022) The matrix-weighted dyadic convex body maximal operator is not bounded. Advances in Mathematics, 410, Part A, 108711, 16 doi:10.1016/j.aim.2022.108711.
@article{article, author = {Nazarov, Fedor and Petermichl, Stefanie and \v{S}kreb, Kristina Ana and Treil, Sergei}, year = {2022}, pages = {16}, DOI = {10.1016/j.aim.2022.108711}, chapter = {108711}, keywords = {Matrix weight, Maximal function, Convex body}, journal = {Advances in Mathematics}, doi = {10.1016/j.aim.2022.108711}, volume = {410, Part A}, issn = {0001-8708}, title = {The matrix-weighted dyadic convex body maximal operator is not bounded}, keyword = {Matrix weight, Maximal function, Convex body}, chapternumber = {108711} }
@article{article, author = {Nazarov, Fedor and Petermichl, Stefanie and \v{S}kreb, Kristina Ana and Treil, Sergei}, year = {2022}, pages = {16}, DOI = {10.1016/j.aim.2022.108711}, chapter = {108711}, keywords = {Matrix weight, Maximal function, Convex body}, journal = {Advances in Mathematics}, doi = {10.1016/j.aim.2022.108711}, volume = {410, Part A}, issn = {0001-8708}, title = {The matrix-weighted dyadic convex body maximal operator is not bounded}, keyword = {Matrix weight, Maximal function, Convex body}, chapternumber = {108711} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font