Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1257431

Validation of Allometric Remote Sensing Based Models for Pedunculate Oak Forests


Tafro, Azra; Jurjević, Luka; Balenović, Ivan
Validation of Allometric Remote Sensing Based Models for Pedunculate Oak Forests // Book of Abstracts BIOSTAT 2021 - 25th Int. Scientific Symposium on Biometrics / Jazbec, Anamarija ; Pecina, Marija ; Sonicki, Zdrenko ; Šimić, Diana ; Vedriš, Mislav ; Sović, Slavica (ur.).
Zagreb: Hrvatsko biometrijsko društvo, 2021. str. 28-28 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1257431 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Validation of Allometric Remote Sensing Based Models for Pedunculate Oak Forests

Autori
Tafro, Azra ; Jurjević, Luka ; Balenović, Ivan

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Book of Abstracts BIOSTAT 2021 - 25th Int. Scientific Symposium on Biometrics / Jazbec, Anamarija ; Pecina, Marija ; Sonicki, Zdrenko ; Šimić, Diana ; Vedriš, Mislav ; Sović, Slavica - Zagreb : Hrvatsko biometrijsko društvo, 2021, 28-28

Skup
BIOSTAT 2021 - 25th International Scientific Symposium on Biometrics

Mjesto i datum
Poreč, Hrvatska, 08.09.2021. - 10.09.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
remote sensing ; nonlinear regression ; log-linear regression ; validation

Sažetak
Light detection and ranging systems (LiDAR) that use laser light to measure distances are becoming increasingly popular in modeling and estimating forest attributes. By providing larger datasets than traditional field measurements they enable better model estimation, and modern computational methods allow for more complex models. However, there are currently no general guidelines for methods of testing and comparing the models. In this work, based on airborne LiDAR data and field measurements in lowland pedunculate oak forests of Pokupska basin, we provide a comprehensive overview of models and (cross-)validation methods and propose a possible best-practice standard in this setting.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Šumarstvo, Interdisciplinarne biotehničke znanosti



POVEZANOST RADA


Projekti:
IP-2016-06-7686 - Uporaba podataka daljinskih istraživanja dobivenih različitim 3D optičkim izvorima u izmjeri šuma (3D-FORINVENT) (Balenović, Ivan, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Hrvatski šumarski institut, Jastrebarsko,
Fakultet šumarstva i drvne tehnologije

Profili:

Avatar Url Luka Jurjević (autor)

Avatar Url Azra Tafro (autor)

Avatar Url Ivan Balenović (autor)

Poveznice na cjeloviti tekst rada:

www.hbmd.hr

Citiraj ovu publikaciju:

Tafro, Azra; Jurjević, Luka; Balenović, Ivan
Validation of Allometric Remote Sensing Based Models for Pedunculate Oak Forests // Book of Abstracts BIOSTAT 2021 - 25th Int. Scientific Symposium on Biometrics / Jazbec, Anamarija ; Pecina, Marija ; Sonicki, Zdrenko ; Šimić, Diana ; Vedriš, Mislav ; Sović, Slavica (ur.).
Zagreb: Hrvatsko biometrijsko društvo, 2021. str. 28-28 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Tafro, A., Jurjević, L. & Balenović, I. (2021) Validation of Allometric Remote Sensing Based Models for Pedunculate Oak Forests. U: Jazbec, A., Pecina, M., Sonicki, Z., Šimić, D., Vedriš, M. & Sović, S. (ur.)Book of Abstracts BIOSTAT 2021 - 25th Int. Scientific Symposium on Biometrics.
@article{article, author = {Tafro, Azra and Jurjevi\'{c}, Luka and Balenovi\'{c}, Ivan}, year = {2021}, pages = {28-28}, keywords = {remote sensing, nonlinear regression, log-linear regression, validation}, title = {Validation of Allometric Remote Sensing Based Models for Pedunculate Oak Forests}, keyword = {remote sensing, nonlinear regression, log-linear regression, validation}, publisher = {Hrvatsko biometrijsko dru\v{s}tvo}, publisherplace = {Pore\v{c}, Hrvatska} }
@article{article, author = {Tafro, Azra and Jurjevi\'{c}, Luka and Balenovi\'{c}, Ivan}, year = {2021}, pages = {28-28}, keywords = {remote sensing, nonlinear regression, log-linear regression, validation}, title = {Validation of Allometric Remote Sensing Based Models for Pedunculate Oak Forests}, keyword = {remote sensing, nonlinear regression, log-linear regression, validation}, publisher = {Hrvatsko biometrijsko dru\v{s}tvo}, publisherplace = {Pore\v{c}, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font