Pregled bibliografske jedinice broj: 1257047
Analyzing different versions of randomized (G)SVD for regularization of large scale discrete inverse problems
Analyzing different versions of randomized (G)SVD for regularization of large scale discrete inverse problems // Book of Abstracts - 11th Conference on Applied Mathematics and Scientific Computing
Brijuni, Hrvatska, 2022. str. 22-22 (poster, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1257047 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analyzing different versions of randomized (G)SVD
for regularization of large scale discrete inverse
problems
Autori
Carević, Anita ; Almekkawy, Mohamed
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Book of Abstracts - 11th Conference on Applied Mathematics and Scientific Computing
/ - , 2022, 22-22
Skup
11th Conference on Applied Mathematics and Scientific Computing
Mjesto i datum
Brijuni, Hrvatska, 05.09.2022. - 09.09.2022
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Ill-posed inverse problem ; regularization ; randomized GSVD
Sažetak
Singular value decomposition (SVD) and generalized singular value decomposition (GSVD) can have an important role when regularizing an ill-posed discrete inverse problem. Since the calculation of (G)SVD for large-scale problems is time consuming, methods that can be used to accelerate it are of particular interest. Recently, research using randomized algorithms to speed up the computation of (G)SVD have been widely reported. Accordingly, existing regularization methods have been modified to use randomized (G)SVD. However, their efficiency may be questionable when regularizing an inverse problem in which the singular values of the operator matrix decay gradually without a significant gap. This is very common in application, usually when the problem arise from discretization of a Fredholm integral equation. In this talk we analyze the application of different versions of randomized (G)SVD to inverse problem in which the singular values decay gradually without a significant gap and offer some improvements for their efficiency.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-UIP-2019-04-5200 - Dekompozicije i aproksimacije matrica i tenzora (DAMAT) (Begović Kovač, Erna, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Profili:
Anita Carević
(autor)