Pregled bibliografske jedinice broj: 1256438
Dense Semantic Forecasting with Multi-Level Feature Warping
Dense Semantic Forecasting with Multi-Level Feature Warping // Applied sciences (Basel), 13 (2022), 1; 1-14 doi:10.3390/app13010400 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1256438 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Dense Semantic Forecasting with Multi-Level Feature Warping
Autori
Sović, Iva ; Šarić, Josip ; Šegvić, Siniša
Izvornik
Applied sciences (Basel) (2076-3417) 13
(2022), 1;
1-14
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
dense semantic forecasting ; dense prediction ; semantic segmentation ; feature forecasting ; future prediction ; deep learning ; computer vision
Sažetak
Anticipation of per-pixel semantics in a future unobserved frame is also known as dense semantic forecasting. State-of-the-art methods are based on single-level regression of a subsampled abstract representation of a recognition model. However, single-level regression cannot account for skip connections from the backbone to the upsampling path. We propose to address this shortcoming by warping shallow features from observed images with upsampled feature flow. Our goal is not straightforward, since warping with coarse feature flow introduces noise into the forecasted features. We therefore base our work on single-frame models that are more resistant to the noise in skip connections. To achieve this, we propose a training procedure that enables recognition models to operate reasonably well with or without skip connections. Validation experiments reveal interesting insights into the influence of particular skip connections on recognition accuracy. Our forecasting method delivers 70.2% mIoU 0.18 s into the future and 58.5% mIoU 0.54 s into the future. These experiments show 0.6 mIoU points of improved accuracy with respect to the baseline and reveal promising directions for future work.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
--IP-2020-02-5851 - Napredna gusta predikcija za računalni vid (ADEPT) (Šegvić, Siniša) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus