Pregled bibliografske jedinice broj: 1256399
Automatic universal taxonomies for multi-domain semantic segmentation
Automatic universal taxonomies for multi-domain semantic segmentation // Proceedings of the 33rd British Machine Vision Conference
London : Delhi: BMVA Press, 2022. str. 1-10 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1256399 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Automatic universal taxonomies for multi-domain semantic segmentation
Autori
Bevandić, Petra ; Šegvić, Siniša
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 33rd British Machine Vision Conference
/ - London : Delhi : BMVA Press, 2022, 1-10
Skup
British Machine Vision Conference (BMVC)
Mjesto i datum
London, Ujedinjeno Kraljevstvo, 21.11.2022. - 24.11.2022
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Semantic segmentation, universal taxonomies
Sažetak
Training semantic segmentation models on multiple datasets has sparked a lot of recent interest in the computer vision community. This interest has been motivated by expensive annotations and a desire to achieve proficiency across multiple visual domains. However, established datasets have mutually incompatible labels which disrupt principled inference in the wild. We address this issue by automatic construction of universal taxonomies through iterative dataset integration. Our method detects subset-superset relationships between dataset-specific labels, and supports learning of sub-class logits by treating super-classes as partial labels. We present experiments on collections of standard datasets and demonstrate competitive generalization performance with respect to previous work.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
--IP-2020-02-5851 - Napredna gusta predikcija za računalni vid (ADEPT) (Šegvić, Siniša) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb