Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1256399

Automatic universal taxonomies for multi-domain semantic segmentation


Bevandić, Petra; Šegvić, Siniša
Automatic universal taxonomies for multi-domain semantic segmentation // Proceedings of the 33rd British Machine Vision Conference
London : Delhi: BMVA Press, 2022. str. 1-10 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1256399 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Automatic universal taxonomies for multi-domain semantic segmentation

Autori
Bevandić, Petra ; Šegvić, Siniša

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 33rd British Machine Vision Conference / - London : Delhi : BMVA Press, 2022, 1-10

Skup
British Machine Vision Conference (BMVC)

Mjesto i datum
London, Ujedinjeno Kraljevstvo, 21.11.2022. - 24.11.2022

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Semantic segmentation, universal taxonomies

Sažetak
Training semantic segmentation models on multiple datasets has sparked a lot of recent interest in the computer vision community. This interest has been motivated by expensive annotations and a desire to achieve proficiency across multiple visual domains. However, established datasets have mutually incompatible labels which disrupt principled inference in the wild. We address this issue by automatic construction of universal taxonomies through iterative dataset integration. Our method detects subset-superset relationships between dataset-specific labels, and supports learning of sub-class logits by treating super-classes as partial labels. We present experiments on collections of standard datasets and demonstrate competitive generalization performance with respect to previous work.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
--IP-2020-02-5851 - Napredna gusta predikcija za računalni vid (ADEPT) (Šegvić, Siniša) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Petra Bevandić (autor)

Avatar Url Siniša Šegvić (autor)

Poveznice na cjeloviti tekst rada:

bmvc2022.mpi-inf.mpg.de arxiv.org

Citiraj ovu publikaciju:

Bevandić, Petra; Šegvić, Siniša
Automatic universal taxonomies for multi-domain semantic segmentation // Proceedings of the 33rd British Machine Vision Conference
London : Delhi: BMVA Press, 2022. str. 1-10 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Bevandić, P. & Šegvić, S. (2022) Automatic universal taxonomies for multi-domain semantic segmentation. U: Proceedings of the 33rd British Machine Vision Conference.
@article{article, author = {Bevandi\'{c}, Petra and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2022}, pages = {1-10}, keywords = {Semantic segmentation, universal taxonomies}, title = {Automatic universal taxonomies for multi-domain semantic segmentation}, keyword = {Semantic segmentation, universal taxonomies}, publisher = {BMVA Press}, publisherplace = {London, Ujedinjeno Kraljevstvo} }
@article{article, author = {Bevandi\'{c}, Petra and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2022}, pages = {1-10}, keywords = {Semantic segmentation, universal taxonomies}, title = {Automatic universal taxonomies for multi-domain semantic segmentation}, keyword = {Semantic segmentation, universal taxonomies}, publisher = {BMVA Press}, publisherplace = {London, Ujedinjeno Kraljevstvo} }




Contrast
Increase Font
Decrease Font
Dyslexic Font