Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1254250

Improving Maternal Risk Analysis in Public Health Systems


Pereira, Silas S. L.; Valter Costa Filho, Raimundo; Ramos, Ronaldo; Oliveira, Mauro; Moreira, Mario W. L.; Rodrigues, Joel J. P. C.; Solic, Petar
Improving Maternal Risk Analysis in Public Health Systems // 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech)
Split, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2020. str. 1-6 doi:10.23919/splitech49282.2020.9243769 (poster, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1254250 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Improving Maternal Risk Analysis in Public Health Systems

Autori
Pereira, Silas S. L. ; Valter Costa Filho, Raimundo ; Ramos, Ronaldo ; Oliveira, Mauro ; Moreira, Mario W. L. ; Rodrigues, Joel J. P. C. ; Solic, Petar

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
2020 5th International Conference on Smart and Sustainable Technologies (SpliTech) / - : Institute of Electrical and Electronics Engineers (IEEE), 2020, 1-6

Skup
5th International Conference on Smart and Sustainable Technologies (SpliTech 2020)

Mjesto i datum
Split, Hrvatska, 23.09.2020. - 26.09.2020

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Electronic Health ; Maternal health monitoring ; Risk prediction ; Recursive feature elimination ; Predictive models.

Sažetak
There are several efforts in intelligent approaches in the literature dealing with maternal death risk prediction. Solutions focused on surveillance and monitoring maternal health contributes to reduce mortality rates, especially in low and middle-income countries. Data required by artificial intelligence systems are usually sensitive and restricted by privacy policies. High quality and trusted maternal health data are essential to obtain reliable predictive models. This study applies the Recursive Feature Elimination (RFE) strategy associated with decision tree-based classifier identifying a relevant set of features among an extensive list of maternal predictive information considered in a decision-making process. This study applies a systematic process of data preparation, analysis, and modeling to develop trusted models from maternal Electronic health registries (eRegistries). Also, this research presents an experiment pipeline to evaluate six well-known supervised machine learning models, namely Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Adaptive Boosting (AdaBoost), Decision Tree (DT), and Gaussian Naive Bayes (GNB), with different combinations of ranked features. Results show that the feature ranking strategy was useful to reduce data dimensionality without affecting the performance of predictive models. The RFEbased predictive models achieves high Accuracy (ACC) and Area Under the Receiver Operating Characteristic Curve (AUC) with only eight maternal features.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Profili:

Avatar Url Petar Šolić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Pereira, Silas S. L.; Valter Costa Filho, Raimundo; Ramos, Ronaldo; Oliveira, Mauro; Moreira, Mario W. L.; Rodrigues, Joel J. P. C.; Solic, Petar
Improving Maternal Risk Analysis in Public Health Systems // 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech)
Split, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2020. str. 1-6 doi:10.23919/splitech49282.2020.9243769 (poster, međunarodna recenzija, sažetak, znanstveni)
Pereira, S., Valter Costa Filho, R., Ramos, R., Oliveira, M., Moreira, M., Rodrigues, J. & Solic, P. (2020) Improving Maternal Risk Analysis in Public Health Systems. U: 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech) doi:10.23919/splitech49282.2020.9243769.
@article{article, author = {Pereira, Silas S. L. and Valter Costa Filho, Raimundo and Ramos, Ronaldo and Oliveira, Mauro and Moreira, Mario W. L. and Rodrigues, Joel J. P. C. and Solic, Petar}, year = {2020}, pages = {1-6}, DOI = {10.23919/splitech49282.2020.9243769}, keywords = {Electronic Health, Maternal health monitoring, Risk prediction, Recursive feature elimination, Predictive models.}, doi = {10.23919/splitech49282.2020.9243769}, title = {Improving Maternal Risk Analysis in Public Health Systems}, keyword = {Electronic Health, Maternal health monitoring, Risk prediction, Recursive feature elimination, Predictive models.}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Split, Hrvatska} }
@article{article, author = {Pereira, Silas S. L. and Valter Costa Filho, Raimundo and Ramos, Ronaldo and Oliveira, Mauro and Moreira, Mario W. L. and Rodrigues, Joel J. P. C. and Solic, Petar}, year = {2020}, pages = {1-6}, DOI = {10.23919/splitech49282.2020.9243769}, keywords = {Electronic Health, Maternal health monitoring, Risk prediction, Recursive feature elimination, Predictive models.}, doi = {10.23919/splitech49282.2020.9243769}, title = {Improving Maternal Risk Analysis in Public Health Systems}, keyword = {Electronic Health, Maternal health monitoring, Risk prediction, Recursive feature elimination, Predictive models.}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Split, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font