Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1254193

UAV Thermal Imaging for Unexploded Ordnance Detection by Using Deep Learning


Bajić, Milan; Potočnik, Božidar
UAV Thermal Imaging for Unexploded Ordnance Detection by Using Deep Learning // Remote Sensing, 15 (2023), 4; 967, 15 doi:10.3390/rs15040967 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1254193 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
UAV Thermal Imaging for Unexploded Ordnance Detection by Using Deep Learning

Autori
Bajić, Milan ; Potočnik, Božidar

Izvornik
Remote Sensing (2072-4292) 15 (2023), 4; 967, 15

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
unmanned aerial vehicle ; unexploded ordnance ; thermal imaging ; UXOTi_NPA dataset ; convolutional neural networks ; deep learning

Sažetak
A few promising solutions for thermal imaging Unexploded Ordnance (UXO) detection were proposed after the start of the military conflict in Ukraine in 2014. At the same time, most of the landmine clearance protocols and practices are based on old, 20th-century technologies. More than 60 countries worldwide are still affected by explosive remnants of war, and new areas are contaminated almost every day. To date, no automated solutions exist for surface UXO detection by using thermal imaging. One of the reasons is also that there are no publicly available data. This research bridges both gaps by introducing an automated UXO detection method, and by publishing thermal imaging data. During a project in Bosnia and Herzegovina in 2019, an organisation, Norwegian People’s Aid, collected data about unexploded ordnances and made them available for this research. Thermal images with a size of 720 × 480 pixels were collected by using an Unmanned Aerial Vehicle at a height of 3 m, thus achieving a very small Ground Sampling Distance (GSD). One of the goals of our research was also to verify if the explosive war remnants’ detection accuracy could be improved further by using Convolutional Neural Networks (CNN). We have experimented with various existing modern CNN architectures for object identification, whereat the YOLOv5 model was selected as the most promising for retraining. An eleven- class object detection problem was solved primarily in this study. Our data were annotated semi-manually. Five versions of the YOLOv5 model, fine-tuned with a grid-search, were trained end-to-end on randomly selected 640 training and 80 validation images from our dataset. The trained models were verified on the remaining 88 images from our dataset. Objects from each of the eleven classes were identified with more than 90% probability, whereat the Mean Average Precision (mAP) at a 0.5 threshold was 99.5%, and the mAP at thresholds from 0.5 to 0.95 was 87.0% up to 90.5%, depending on the model’s complexity. Our results are comparable to the state-of- the-art, whereat these object detection methods have been tested on other similar small datasets with thermal images. Our study is one of the few in the field of Automated UXO detection by using thermal images, and the first that solves the problem of identifying more than one class of objects. On the other hand, publicly available thermal images with a relatively small GSD will enable and stimulate the development of new detection algorithms, where our method and results can serve as a baseline. Only really accurate automatic UXO detection solutions will help to solve one of the least explored worldwide life-threatening problems.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Tehničko veleučilište u Zagrebu

Profili:

Avatar Url Milan Bajić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi doi.org

Citiraj ovu publikaciju:

Bajić, Milan; Potočnik, Božidar
UAV Thermal Imaging for Unexploded Ordnance Detection by Using Deep Learning // Remote Sensing, 15 (2023), 4; 967, 15 doi:10.3390/rs15040967 (međunarodna recenzija, članak, znanstveni)
Bajić, M. & Potočnik, B. (2023) UAV Thermal Imaging for Unexploded Ordnance Detection by Using Deep Learning. Remote Sensing, 15 (4), 967, 15 doi:10.3390/rs15040967.
@article{article, author = {Baji\'{c}, Milan and Poto\v{c}nik, Bo\v{z}idar}, year = {2023}, pages = {15}, DOI = {10.3390/rs15040967}, chapter = {967}, keywords = {unmanned aerial vehicle, unexploded ordnance, thermal imaging, UXOTi\_NPA dataset, convolutional neural networks, deep learning}, journal = {Remote Sensing}, doi = {10.3390/rs15040967}, volume = {15}, number = {4}, issn = {2072-4292}, title = {UAV Thermal Imaging for Unexploded Ordnance Detection by Using Deep Learning}, keyword = {unmanned aerial vehicle, unexploded ordnance, thermal imaging, UXOTi\_NPA dataset, convolutional neural networks, deep learning}, chapternumber = {967} }
@article{article, author = {Baji\'{c}, Milan and Poto\v{c}nik, Bo\v{z}idar}, year = {2023}, pages = {15}, DOI = {10.3390/rs15040967}, chapter = {967}, keywords = {unmanned aerial vehicle, unexploded ordnance, thermal imaging, UXOTi\_NPA dataset, convolutional neural networks, deep learning}, journal = {Remote Sensing}, doi = {10.3390/rs15040967}, volume = {15}, number = {4}, issn = {2072-4292}, title = {UAV Thermal Imaging for Unexploded Ordnance Detection by Using Deep Learning}, keyword = {unmanned aerial vehicle, unexploded ordnance, thermal imaging, UXOTi\_NPA dataset, convolutional neural networks, deep learning}, chapternumber = {967} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font