Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1253644

Speed and accuracy benchmarks of large-scale microbial gene function prediction with supervised machine learning


Vidulin, Vedrana; Šmuc, Tomislav; Supek, Fran
Speed and accuracy benchmarks of large-scale microbial gene function prediction with supervised machine learning // Discovery science : book of abstracts
Bled, Slovenija, 2014. str. 1-3 (poster, međunarodna recenzija, prošireni sažetak, znanstveni)


CROSBI ID: 1253644 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Speed and accuracy benchmarks of large-scale microbial gene function prediction with supervised machine learning

Autori
Vidulin, Vedrana ; Šmuc, Tomislav ; Supek, Fran

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, prošireni sažetak, znanstveni

Izvornik
Discovery science : book of abstracts / - , 2014, 1-3

Skup
Discovery Science

Mjesto i datum
Bled, Slovenija, 08.10.2014. - 10.10.2014

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
gene function prediction, supervised machine learning, bencmark

Sažetak
Machine learning approaches for microbial gene function prediction (MGFP) from genome context data are mostly unsupervised [1] and rely on pairwise distances between individual examples arranged into “functional interaction networks” [2]. When supervised approaches were used, most of them typically predicted a limited set of functions and/or used a single-label approach to classification [3, 4], constructing a separate classifier for each function and ignoring the relationships between the functions. Multilabel approaches may perform better, especially those that can exploit the relations between functions readily available in gene function ontologies [5]. Our aim is to compare predictive accuracy and computational efficiency of single vs. multi-label approaches on supervised MGFP. High accuracy is a prerequisite for applying the classifier in real- life tasks, where confidence in predicted functions is of key importance for prioritizing downstream experimental work. Many such predictions have indeed been validated in biological experiments [6, 7]. A lower demand for computational time is of importance when the number of considered functions is high.

Izvorni jezik
Engleski



POVEZANOST RADA


Profili:

Avatar Url Fran Supek (autor)

Avatar Url Tomislav Šmuc (autor)

Avatar Url Vedrana Vidulin (autor)

Poveznice na cjeloviti tekst rada:

ds2014.ijs.si

Citiraj ovu publikaciju:

Vidulin, Vedrana; Šmuc, Tomislav; Supek, Fran
Speed and accuracy benchmarks of large-scale microbial gene function prediction with supervised machine learning // Discovery science : book of abstracts
Bled, Slovenija, 2014. str. 1-3 (poster, međunarodna recenzija, prošireni sažetak, znanstveni)
Vidulin, V., Šmuc, T. & Supek, F. (2014) Speed and accuracy benchmarks of large-scale microbial gene function prediction with supervised machine learning. U: Discovery science : book of abstracts.
@article{article, author = {Vidulin, Vedrana and \v{S}muc, Tomislav and Supek, Fran}, year = {2014}, pages = {1-3}, keywords = {gene function prediction, supervised machine learning, bencmark}, title = {Speed and accuracy benchmarks of large-scale microbial gene function prediction with supervised machine learning}, keyword = {gene function prediction, supervised machine learning, bencmark}, publisherplace = {Bled, Slovenija} }
@article{article, author = {Vidulin, Vedrana and \v{S}muc, Tomislav and Supek, Fran}, year = {2014}, pages = {1-3}, keywords = {gene function prediction, supervised machine learning, bencmark}, title = {Speed and accuracy benchmarks of large-scale microbial gene function prediction with supervised machine learning}, keyword = {gene function prediction, supervised machine learning, bencmark}, publisherplace = {Bled, Slovenija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font