Pregled bibliografske jedinice broj: 125342
A deBoor Type Algorithm for Tension Splines
A deBoor Type Algorithm for Tension Splines // Curve and Surface Fitting / Cohen, Albert ; Merrien, Jean-Loius. ; Schumaker, Larry L. (ur.).
Brentwood: Nashboro Press, 2003. str. 343-352 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 125342 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A deBoor Type Algorithm for Tension Splines
Autori
Rogina, Mladen ; Bosner, Tina
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Curve and Surface Fitting
/ Cohen, Albert ; Merrien, Jean-Loius. ; Schumaker, Larry L. - Brentwood : Nashboro Press, 2003, 343-352
Skup
Curves and Surfaces
Mjesto i datum
Saint-Malo, Francuska, 27.06.2002. - 03.07.2002
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Knot insertion; Chebyshev systems; Tension splines
Sažetak
We consider a special knot insertion algorithm for tension splines, which are piecewisely in the linear space spanned by $\{1, x, \exp{\pm (p x)}\}$, \ie tension splines with uniform tension $p>0$. Tension splines are treated as Chebyshev ones, associated with the differential operator $D^2(D^2-p^2)$. Various product representations of this operator exist, and we choose one that leads to the hyperbolic splines in the first reduced Chebyshev system. We construct a de\thinspace Boor type algorithm for such splines, which reduces to the well known one in the limit cases of cubic ($p=0$) and linear ($p\rightarrow \infty$) splines. The knot insertion matrices involved behave nicely with respect to the change in tension parameter within range $0<p<\infty$, but also with respect to the knot sequence.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037114
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb